Step * 1 of Lemma singleton-contr_wf

.....subterm..... T:t
2:n
1. CubicalSet{j}
2. {X ⊢ _}
3. {X ⊢ _:A}
4. singleton-contraction(X.Singleton(a);q.2)
   ∈ {X.Singleton(a) ⊢ _:(Path_Singleton((a)p) singleton-center(X.Singleton(a);(a)p) q)}
⊢ (X.Singleton(a) ⊢ Path_Singleton((a)p) singleton-center(X.Singleton(a);(a)p) q)
(X.Singleton(a) ⊢ Path_(Singleton(a))p (singleton-center(X;a))p q)
∈ cubical-type{[j' i']:l}(X.Singleton(a))
BY
(Symmetry THEN EqCDA THEN Auto) }


Latex:


Latex:
.....subterm.....  T:t
2:n
1.  X  :  CubicalSet\{j\}
2.  A  :  \{X  \mvdash{}  \_\}
3.  a  :  \{X  \mvdash{}  \_:A\}
4.  singleton-contraction(X.Singleton(a);q.2)
      \mmember{}  \{X.Singleton(a)  \mvdash{}  \_:(Path\_Singleton((a)p)  singleton-center(X.Singleton(a);(a)p)  q)\}
\mvdash{}  (X.Singleton(a)  \mvdash{}  Path\_Singleton((a)p)  singleton-center(X.Singleton(a);(a)p)  q)
=  (X.Singleton(a)  \mvdash{}  Path\_(Singleton(a))p  (singleton-center(X;a))p  q)


By


Latex:
(Symmetry  THEN  EqCDA  THEN  Auto)




Home Index