Step
*
1
of Lemma
singleton-contr_wf
.....subterm..... T:t
2:n
1. X : CubicalSet{j}
2. A : {X ⊢ _}
3. a : {X ⊢ _:A}
4. singleton-contraction(X.Singleton(a);q.2)
   ∈ {X.Singleton(a) ⊢ _:(Path_Singleton((a)p) singleton-center(X.Singleton(a);(a)p) q)}
⊢ (X.Singleton(a) ⊢ Path_Singleton((a)p) singleton-center(X.Singleton(a);(a)p) q)
= (X.Singleton(a) ⊢ Path_(Singleton(a))p (singleton-center(X;a))p q)
∈ cubical-type{[j' | i']:l}(X.Singleton(a))
BY
{ (Symmetry THEN EqCDA THEN Auto) }
Latex:
Latex:
.....subterm.....  T:t
2:n
1.  X  :  CubicalSet\{j\}
2.  A  :  \{X  \mvdash{}  \_\}
3.  a  :  \{X  \mvdash{}  \_:A\}
4.  singleton-contraction(X.Singleton(a);q.2)
      \mmember{}  \{X.Singleton(a)  \mvdash{}  \_:(Path\_Singleton((a)p)  singleton-center(X.Singleton(a);(a)p)  q)\}
\mvdash{}  (X.Singleton(a)  \mvdash{}  Path\_Singleton((a)p)  singleton-center(X.Singleton(a);(a)p)  q)
=  (X.Singleton(a)  \mvdash{}  Path\_(Singleton(a))p  (singleton-center(X;a))p  q)
By
Latex:
(Symmetry  THEN  EqCDA  THEN  Auto)
Home
Index