Nuprl Lemma : singleton-contr_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  (singleton-contr(X;A;a) ∈ {X ⊢ _:Contractible(Singleton(a))})


Proof




Definitions occuring in Statement :  singleton-contr: singleton-contr(X;A;a) singleton-type: Singleton(a) contractible-type: Contractible(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T singleton-contr: singleton-contr(X;A;a) subtype_rel: A ⊆B squash: T true: True prop:
Lemmas referenced :  contr-witness_wf singleton-type_wf singleton-center_wf singleton-contraction_wf2 cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf csm-ap-term_wf cc-snd_wf cubical-term_wf csm-singleton-type cubical-type_wf cubical_set_wf path-type_wf squash_wf true_wf csm-singleton-center
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis instantiate applyEquality equalityTransitivity equalitySymmetry lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].
    (singleton-contr(X;A;a)  \mmember{}  \{X  \mvdash{}  \_:Contractible(Singleton(a))\})



Date html generated: 2020_05_20-PM-03_30_12
Last ObjectModification: 2020_04_08-AM-11_40_29

Theory : cubical!type!theory


Home Index