Nuprl Lemma : singleton-contraction_wf2
∀[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[a:{X ⊢ _:T}]. ∀[s:{X ⊢ _:Singleton(a)}].
  (singleton-contraction(X;s.2) ∈ {X ⊢ _:(Path_Singleton(a) singleton-center(X;a) s)})
Proof
Definitions occuring in Statement : 
singleton-center: singleton-center(X;a)
, 
singleton-type: Singleton(a)
, 
singleton-contraction: singleton-contraction(X;pth)
, 
path-type: (Path_A a b)
, 
cubical-snd: p.2
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
singleton-type: Singleton(a)
, 
singleton-center: singleton-center(X;a)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
cubical-sigma: Σ A B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
true: True
Lemmas referenced : 
cubical-term_wf, 
singleton-type_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
singleton-contraction_wf, 
cubical-fst_wf, 
path-type_wf, 
cube-context-adjoin_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-ap-term_wf, 
cc-snd_wf, 
cubical-snd_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-id-adjoin_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
singleton-center_wf, 
cubical-pair-eta, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
thin, 
instantiate, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
hyp_replacement
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:T\}].  \mforall{}[s:\{X  \mvdash{}  \_:Singleton(a)\}].
    (singleton-contraction(X;s.2)  \mmember{}  \{X  \mvdash{}  \_:(Path\_Singleton(a)  singleton-center(X;a)  s)\})
Date html generated:
2020_05_20-PM-03_29_49
Last ObjectModification:
2020_04_06-PM-06_51_51
Theory : cubical!type!theory
Home
Index