Nuprl Lemma : singleton-type_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  X ⊢ Singleton(a)


Proof




Definitions occuring in Statement :  singleton-type: Singleton(a) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T singleton-type: Singleton(a) subtype_rel: A ⊆B
Lemmas referenced :  cubical-sigma_wf path-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf csm-ap-term_wf cc-snd_wf cubical-term_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality hypothesis because_Cache equalityTransitivity equalitySymmetry axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    X  \mvdash{}  Singleton(a)



Date html generated: 2020_05_20-PM-03_29_14
Last ObjectModification: 2020_04_06-PM-06_50_49

Theory : cubical!type!theory


Home Index