Nuprl Lemma : singleton-contraction_wf

[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[a,b:{X ⊢ _:T}]. ∀[pth:{X ⊢ _:(Path_T b)}].
  (singleton-contraction(X;pth) ∈ {X ⊢ _:(Path_Σ (Path_(T)p (a)p q) cubical-pair(a;refl(a)) cubical-pair(b;pth))})


Proof




Definitions occuring in Statement :  singleton-contraction: singleton-contraction(X;pth) cubical-refl: refl(a) path-type: (Path_A b) cubical-pair: cubical-pair(u;v) cubical-sigma: Σ B cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T singleton-contraction: singleton-contraction(X;pth) squash: T prop: subtype_rel: A ⊆B all: x:A. B[x] true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q path-point: path-point(pth) cubical-type: {X ⊢ _} cc-fst: p csm-ap-type: (AF)s interval-type: 𝕀 csm-id: 1(X) csm-ap: (s)x cc-snd: q csm-comp: F constant-cubical-type: (X) compose: g csm-adjoin: (s;u) pi1: fst(t) csm-ap-term: (t)s same-cubical-term: X ⊢ u=v:A
Lemmas referenced :  cubical-refl_wf cubical-term_wf squash_wf true_wf equal_wf istype-universe cubical-type_wf cubical_set_cumulativity-i-j path-type_wf cubical-type-cumulativity2 csm-path-type cube-context-adjoin_wf csm-id-adjoin_wf csm-ap-type_wf cc-fst_wf csm-ap-term_wf cc-snd_wf subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma csm_id_adjoin_fst_term_lemma cc_snd_csm_id_adjoin_lemma csm-id_wf csm-ap-id-term subset-cubical-term2 sub_cubical_set_self csm-ap-id-type term-to-path-wf cubical-sigma_wf cubical-pair_wf cubical_set_wf path-contraction_wf path-point_wf interval-type_wf csm-cubical-sigma csm-adjoin_wf csm-comp_wf csm-ap-term-snd-adjoin csm-cubical-pair cubical-path-ap-id-adjoin cubical-path-app-1 path-contraction-1 cubical-path-app_wf interval-1_wf path-type-q-id-adjoin cubical-path-app-0 path-contraction-0 interval-0_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality instantiate lambdaEquality_alt imageElimination because_Cache hypothesis universeIsType equalityTransitivity equalitySymmetry universeEquality sqequalRule dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination Error :memTop,  hyp_replacement axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaFormation_alt equalityIstype setElimination rename

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:T\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_T  a  b)\}].
    (singleton-contraction(X;pth)  \mmember{}  \{X  \mvdash{}  \_:(Path\_\mSigma{}  T  (Path\_(T)p  (a)p  q)  cubical-pair(a;refl(a))
                                                                                              cubical-pair(b;pth))\})



Date html generated: 2020_05_20-PM-03_29_03
Last ObjectModification: 2020_04_07-PM-05_36_34

Theory : cubical!type!theory


Home Index