Nuprl Lemma : path-contraction-0

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A b)}].
  ((path-contraction(X;pth))[0(𝕀)] refl(a) ∈ {X ⊢ _:(Path_A a)})


Proof




Definitions occuring in Statement :  path-contraction: path-contraction(X;pth) cubical-refl: refl(a) path-type: (Path_A b) interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B all: x:A. B[x] true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q path-contraction: path-contraction(X;pth) term-to-pathtype: <>a cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) cubical-refl: refl(a) csm-ap-term: (t)s interval-0: 0(𝕀) csm-id-adjoin: [u] csm+: tau+ csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) csm-comp: F pi1: fst(t) compose: g pi2: snd(t) interval-meet: r ∧ s cubical-term-at: u(a)
Lemmas referenced :  cubical-term_wf equal_wf squash_wf true_wf istype-universe cubical-type_wf cubical_set_cumulativity-i-j csm-path-type cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf-interval-0 csm-ap-type_wf cc-fst_wf cubical-type-cumulativity2 csm-ap-term_wf path-point_wf path-type_wf subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma csm_id_adjoin_fst_term_lemma csm-id_wf path-point-0 subset-cubical-term2 sub_cubical_set_self csm-ap-id-type csm-ap-id-term path-contraction_wf cubical_set_wf cubical-refl_wf path-type-subtype paths-equal csm-term-to-pathtype pathtype_wf csm-id-adjoin_wf interval-0_wf cubical-path-app_wf interval-meet_wf csm-interval-type cc-snd_wf path-type-p cube_set_map_wf term-to-pathtype_wf csm-cubical-path-app cubical-path-app-0 csm-interval-meet interval-meet-comm interval-meet-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin instantiate lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination because_Cache hypothesis hypothesisEquality equalityTransitivity equalitySymmetry universeIsType universeEquality sqequalRule dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination Error :memTop,  hyp_replacement isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType applyLambdaEquality lambdaFormation_alt equalityIstype

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].
    ((path-contraction(X;pth))[0(\mBbbI{})]  =  refl(a))



Date html generated: 2020_05_20-PM-03_28_35
Last ObjectModification: 2020_04_07-PM-05_38_59

Theory : cubical!type!theory


Home Index