Nuprl Lemma : path-contraction-0
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A a b)}].
  ((path-contraction(X;pth))[0(𝕀)] = refl(a) ∈ {X ⊢ _:(Path_A a a)})
Proof
Definitions occuring in Statement : 
path-contraction: path-contraction(X;pth)
, 
cubical-refl: refl(a)
, 
path-type: (Path_A a b)
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
path-contraction: path-contraction(X;pth)
, 
term-to-pathtype: <>a
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
cubical-refl: refl(a)
, 
csm-ap-term: (t)s
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm+: tau+
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-comp: G o F
, 
pi1: fst(t)
, 
compose: f o g
, 
pi2: snd(t)
, 
interval-meet: r ∧ s
, 
cubical-term-at: u(a)
Lemmas referenced : 
cubical-term_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type_wf, 
cubical_set_cumulativity-i-j, 
csm-path-type, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf-interval-0, 
csm-ap-type_wf, 
cc-fst_wf, 
cubical-type-cumulativity2, 
csm-ap-term_wf, 
path-point_wf, 
path-type_wf, 
subtype_rel_self, 
iff_weakening_equal, 
csm_id_adjoin_fst_type_lemma, 
csm_id_adjoin_fst_term_lemma, 
csm-id_wf, 
path-point-0, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-id-type, 
csm-ap-id-term, 
path-contraction_wf, 
cubical_set_wf, 
cubical-refl_wf, 
path-type-subtype, 
paths-equal, 
csm-term-to-pathtype, 
pathtype_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
cubical-path-app_wf, 
interval-meet_wf, 
csm-interval-type, 
cc-snd_wf, 
path-type-p, 
cube_set_map_wf, 
term-to-pathtype_wf, 
csm-cubical-path-app, 
cubical-path-app-0, 
csm-interval-meet, 
interval-meet-comm, 
interval-meet-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
thin, 
instantiate, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
sqequalRule, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
Error :memTop, 
hyp_replacement, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
applyLambdaEquality, 
lambdaFormation_alt, 
equalityIstype
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].
    ((path-contraction(X;pth))[0(\mBbbI{})]  =  refl(a))
Date html generated:
2020_05_20-PM-03_28_35
Last ObjectModification:
2020_04_07-PM-05_38_59
Theory : cubical!type!theory
Home
Index