Nuprl Lemma : interval-meet-0

[X:j⊢]. ∀[z:{X ⊢ _:𝕀}].  (z ∧ 0(𝕀0(𝕀) ∈ {X ⊢ _:𝕀})


Proof




Definitions occuring in Statement :  interval-meet: r ∧ s interval-0: 0(𝕀) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] interval-0: 0(𝕀) interval-meet: r ∧ s cubical-term-at: u(a) interval-presheaf: 𝕀 dM0: 0 subtype_rel: A ⊆B guard: {T} cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  cubical-term-equal2 interval-type_wf interval-meet_wf interval-0_wf interval-type-at I_cube_wf fset_wf nat_wf cubical-term_wf cubical_set_wf I_cube_pair_redex_lemma lattice-0-meet dM_wf bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype subtype_rel_transitivity DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf cubical-term-at_wf subtype_rel_self lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate independent_isectElimination lambdaFormation_alt sqequalRule Error :memTop,  universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType dependent_functionElimination applyEquality lambdaEquality_alt productEquality cumulativity because_Cache isectEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[z:\{X  \mvdash{}  \_:\mBbbI{}\}].    (z  \mwedge{}  0(\mBbbI{})  =  0(\mBbbI{}))



Date html generated: 2020_05_20-PM-02_37_39
Last ObjectModification: 2020_04_04-AM-09_56_08

Theory : cubical!type!theory


Home Index