Nuprl Lemma : path-point-0

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A b)}].  ((path-point(pth))[0(𝕀)] a ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  path-point: path-point(pth) path-type: (Path_A b) interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T path-point: path-point(pth) all: x:A. B[x] interval-0: 0(𝕀) csm-id: 1(X) csm-ap-term: (t)s subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  csm-cubical-path-app csm_id_adjoin_fst_term_lemma cc_snd_csm_id_adjoin_lemma cubical-term_wf path-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf cubical-path-app-0 csm-ap-term_wf csm-id_wf subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf csm-ap-id-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis dependent_functionElimination universeIsType instantiate hypothesisEquality applyEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType because_Cache independent_isectElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].    ((path-point(pth))[0(\mBbbI{})]  =  a)



Date html generated: 2020_05_20-PM-03_27_57
Last ObjectModification: 2020_04_06-PM-06_46_42

Theory : cubical!type!theory


Home Index