Step
*
of Lemma
path-contraction-0
No Annotations
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A a b)}].
((path-contraction(X;pth))[0(𝕀)] = refl(a) ∈ {X ⊢ _:(Path_A a a)})
BY
{ (Auto
THEN (Assert (path-contraction(X;pth))[0(𝕀)] ∈ {X ⊢ _:(Path_A a a)} BY
((InferEqualType THEN Auto) THEN RWO "csm-path-type" 0⋅ THEN Auto THEN EqCDA THEN Auto))
) }
1
1. X : CubicalSet{j}
2. A : {X ⊢ _}
3. a : {X ⊢ _:A}
4. b : {X ⊢ _:A}
5. pth : {X ⊢ _:(Path_A a b)}
6. (path-contraction(X;pth))[0(𝕀)] ∈ {X ⊢ _:(Path_A a a)}
⊢ (path-contraction(X;pth))[0(𝕀)] = refl(a) ∈ {X ⊢ _:(Path_A a a)}
Latex:
Latex:
No Annotations
\mforall{}[X:j\mvdash{}]. \mforall{}[A:\{X \mvdash{} \_\}]. \mforall{}[a,b:\{X \mvdash{} \_:A\}]. \mforall{}[pth:\{X \mvdash{} \_:(Path\_A a b)\}].
((path-contraction(X;pth))[0(\mBbbI{})] = refl(a))
By
Latex:
(Auto
THEN (Assert (path-contraction(X;pth))[0(\mBbbI{})] \mmember{} \{X \mvdash{} \_:(Path\_A a a)\} BY
((InferEqualType THEN Auto)
THEN RWO "csm-path-type" 0\mcdot{}
THEN Auto
THEN EqCDA
THEN Auto))
)
Home
Index