Nuprl Lemma : path-point_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A a b)}].  (path-point(pth) ∈ {X.𝕀 ⊢ _:(A)p})
Proof
Definitions occuring in Statement : 
path-point: path-point(pth)
, 
path-type: (Path_A a b)
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
path-point: path-point(pth)
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
true: True
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
Lemmas referenced : 
cubical-path-app_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
cc-fst_wf, 
csm-ap-term_wf, 
path-type_wf, 
cubical-term_wf, 
csm-path-type, 
cubical-type-cumulativity2, 
cc-snd_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
universeIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].
    (path-point(pth)  \mmember{}  \{X.\mBbbI{}  \mvdash{}  \_:(A)p\})
Date html generated:
2020_05_20-PM-03_27_45
Last ObjectModification:
2020_04_06-PM-06_46_27
Theory : cubical!type!theory
Home
Index