Nuprl Lemma : path-point_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A b)}].  (path-point(pth) ∈ {X.𝕀 ⊢ _:(A)p})


Proof




Definitions occuring in Statement :  path-point: path-point(pth) path-type: (Path_A b) interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T path-point: path-point(pth) subtype_rel: A ⊆B squash: T all: x:A. B[x] true: True cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X)
Lemmas referenced :  cubical-path-app_wf cube-context-adjoin_wf interval-type_wf csm-ap-type_wf cubical_set_cumulativity-i-j cc-fst_wf csm-ap-term_wf path-type_wf cubical-term_wf csm-path-type cubical-type-cumulativity2 cc-snd_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis hypothesisEquality applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].
    (path-point(pth)  \mmember{}  \{X.\mBbbI{}  \mvdash{}  \_:(A)p\})



Date html generated: 2020_05_20-PM-03_27_45
Last ObjectModification: 2020_04_06-PM-06_46_27

Theory : cubical!type!theory


Home Index