Nuprl Lemma : csm-interval-meet
∀[h,r,s:Top].  ((r ∧ s)h ~ (r)h ∧ (s)h)
Proof
Definitions occuring in Statement : 
interval-meet: r ∧ s
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
interval-meet: r ∧ s
, 
csm-ap-term: (t)s
, 
cubical-term-at: u(a)
, 
csm-ap: (s)x
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[h,r,s:Top].    ((r  \mwedge{}  s)h  \msim{}  (r)h  \mwedge{}  (s)h)
Date html generated:
2017_01_10-AM-08_44_29
Last ObjectModification:
2016_12_01-PM-00_57_01
Theory : cubical!type!theory
Home
Index