Nuprl Lemma : path-type-p
∀[X:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}].  ((X.B ⊢ Path_(A)p (a)p (b)p) = ((Path_A a b))p ∈ {X.B ⊢ _})
Proof
Definitions occuring in Statement : 
path-type: (Path_A a b)
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
csm-path-type, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cc-fst_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
isectElimination, 
because_Cache, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].    ((X.B  \mvdash{}  Path\_(A)p  (a)p  (b)p)  =  ((Path\_A  a  b))p)
Date html generated:
2020_05_20-PM-03_16_07
Last ObjectModification:
2020_04_06-PM-05_57_58
Theory : cubical!type!theory
Home
Index