Nuprl Lemma : path-type-p

[X:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}].  ((X.B ⊢ Path_(A)p (a)p (b)p) ((Path_A b))p ∈ {X.B ⊢ _})


Proof




Definitions occuring in Statement :  path-type: (Path_A b) cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  csm-path-type cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf cubical-term_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry thin instantiate extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality applyEquality hypothesis sqequalRule isectElimination because_Cache inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].    ((X.B  \mvdash{}  Path\_(A)p  (a)p  (b)p)  =  ((Path\_A  a  b))p)



Date html generated: 2020_05_20-PM-03_16_07
Last ObjectModification: 2020_04_06-PM-05_57_58

Theory : cubical!type!theory


Home Index