Step
*
1
of Lemma
trans-const-path_wf
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. cA : G +⊢ Compositon(A)
4. a : {G ⊢ _:A}
5. ∀[u:{G.𝕀, 0(𝔽) ⊢ _:(A)p}]. ∀[a1:{G ⊢ _:((A)p)[1(𝕀)][0(𝔽) |⟶ u[1]]}].
(rev_fill_term(G;(cA)p;0(𝔽);u;a1) ∈ {G.𝕀 ⊢ _:(A)p[0(𝔽) |⟶ u]})
6. discr(⋅) ∈ {G.𝕀, 0(𝔽) ⊢ _:(A)p}
7. a ∈ {G ⊢ _:((A)p)[1(𝕀)][0(𝔽) |⟶ discr(⋅)[1]]}
8. rev_fill_term(G;(cA)p;0(𝔽);discr(⋅);a) ∈ {G.𝕀 ⊢ _:(A)p}
⊢ comp rev-type-comp(G;(cA)p) [0(𝔽) ⊢→ (discr(⋅))(p;1-(q))] a = transprt-const(G;cA;a) ∈ {G ⊢ _:A}
BY
{ (Subst' rev-type-comp(G;(cA)p) ~ (cA)p 0 THENA (RepUR ``rev-type-comp`` 0 THEN CsmUnfoldingComp)) }
1
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. cA : G +⊢ Compositon(A)
4. a : {G ⊢ _:A}
5. ∀[u:{G.𝕀, 0(𝔽) ⊢ _:(A)p}]. ∀[a1:{G ⊢ _:((A)p)[1(𝕀)][0(𝔽) |⟶ u[1]]}].
(rev_fill_term(G;(cA)p;0(𝔽);u;a1) ∈ {G.𝕀 ⊢ _:(A)p[0(𝔽) |⟶ u]})
6. discr(⋅) ∈ {G.𝕀, 0(𝔽) ⊢ _:(A)p}
7. a ∈ {G ⊢ _:((A)p)[1(𝕀)][0(𝔽) |⟶ discr(⋅)[1]]}
8. rev_fill_term(G;(cA)p;0(𝔽);discr(⋅);a) ∈ {G.𝕀 ⊢ _:(A)p}
⊢ comp (cA)p [0(𝔽) ⊢→ (discr(⋅))(p;1-(q))] a = transprt-const(G;cA;a) ∈ {G ⊢ _:A}
Latex:
Latex:
1. G : CubicalSet\{j\}
2. A : \{G \mvdash{} \_\}
3. cA : G +\mvdash{} Compositon(A)
4. a : \{G \mvdash{} \_:A\}
5. \mforall{}[u:\{G.\mBbbI{}, 0(\mBbbF{}) \mvdash{} \_:(A)p\}]. \mforall{}[a1:\{G \mvdash{} \_:((A)p)[1(\mBbbI{})][0(\mBbbF{}) |{}\mrightarrow{} u[1]]\}].
(rev\_fill\_term(G;(cA)p;0(\mBbbF{});u;a1) \mmember{} \{G.\mBbbI{} \mvdash{} \_:(A)p[0(\mBbbF{}) |{}\mrightarrow{} u]\})
6. discr(\mcdot{}) \mmember{} \{G.\mBbbI{}, 0(\mBbbF{}) \mvdash{} \_:(A)p\}
7. a \mmember{} \{G \mvdash{} \_:((A)p)[1(\mBbbI{})][0(\mBbbF{}) |{}\mrightarrow{} discr(\mcdot{})[1]]\}
8. rev\_fill\_term(G;(cA)p;0(\mBbbF{});discr(\mcdot{});a) \mmember{} \{G.\mBbbI{} \mvdash{} \_:(A)p\}
\mvdash{} comp rev-type-comp(G;(cA)p) [0(\mBbbF{}) \mvdash{}\mrightarrow{} (discr(\mcdot{}))(p;1-(q))] a = transprt-const(G;cA;a)
By
Latex:
(Subst' rev-type-comp(G;(cA)p) \msim{} (cA)p 0 THENA (RepUR ``rev-type-comp`` 0 THEN CsmUnfoldingComp))
Home
Index