Nuprl Lemma : trans-const-path_wf

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[a:{G ⊢ _:A}].
  (trans-const-path(G;cA;a) ∈ {G ⊢ _:(Path_A transprt-const(G;cA;a) a)})


Proof




Definitions occuring in Statement :  trans-const-path: trans-const-path(G;cA;a) transprt-const: transprt-const(G;cA;a) composition-structure: Gamma ⊢ Compositon(A) path-type: (Path_A b) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T trans-const-path: trans-const-path(G;cA;a) subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] respects-equality: respects-equality(S;T) composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) same-cubical-term: X ⊢ u=v:A rev-type-comp: rev-type-comp(Gamma;cA) csm-comp-structure: (cA)tau cc-fst: p interval-type: 𝕀 csm-comp: F cc-snd: q interval-rev: 1-(r) csm-adjoin: (s;u) compose: g cubical-term-at: u(a) csm-ap: (s)x pi1: fst(t) transprt-const: transprt-const(G;cA;a)
Lemmas referenced :  rev_fill_term_wf face-0_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf csm-comp-structure_wf composition-structure-cumulativity csm-face-0 empty-context-subset-lemma3 equal_wf squash_wf true_wf istype-universe cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-type-fst-id-adjoin subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma istype-cubical-term context-subset_wf csm-id-adjoin_wf interval-1_wf csm-context-subset-subtype2 respects-equality-context-subset-term csm-id-adjoin_wf-interval-1 term-to-path-wf transprt-const_wf composition-structure_wf same-cubical-term_wf rev_fill_term_1 subset-cubical-term2 sub_cubical_set_self csm-ap-id-type rev_fill_term_0 csm-id-adjoin_wf-interval-0 cubical-type_wf cubical_set_wf equals-transprt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality because_Cache Error :memTop,  equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt lambdaEquality_alt imageElimination universeIsType universeEquality closedConclusion natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination hyp_replacement dependent_functionElimination equalityIstype setElimination rename inhabitedIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].
    (trans-const-path(G;cA;a)  \mmember{}  \{G  \mvdash{}  \_:(Path\_A  transprt-const(G;cA;a)  a)\})



Date html generated: 2020_05_20-PM-04_57_13
Last ObjectModification: 2020_04_14-PM-10_36_35

Theory : cubical!type!theory


Home Index