Nuprl Lemma : trans-const-path_wf
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[a:{G ⊢ _:A}].
  (trans-const-path(G;cA;a) ∈ {G ⊢ _:(Path_A transprt-const(G;cA;a) a)})
Proof
Definitions occuring in Statement : 
trans-const-path: trans-const-path(G;cA;a)
, 
transprt-const: transprt-const(G;cA;a)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
path-type: (Path_A a b)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
trans-const-path: trans-const-path(G;cA;a)
, 
subtype_rel: A ⊆r B
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
respects-equality: respects-equality(S;T)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
same-cubical-term: X ⊢ u=v:A
, 
rev-type-comp: rev-type-comp(Gamma;cA)
, 
csm-comp-structure: (cA)tau
, 
cc-fst: p
, 
interval-type: 𝕀
, 
csm-comp: G o F
, 
cc-snd: q
, 
interval-rev: 1-(r)
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
cubical-term-at: u(a)
, 
csm-ap: (s)x
, 
pi1: fst(t)
, 
transprt-const: transprt-const(G;cA;a)
Lemmas referenced : 
rev_fill_term_wf, 
face-0_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf, 
csm-comp-structure_wf, 
composition-structure-cumulativity, 
csm-face-0, 
empty-context-subset-lemma3, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-type-fst-id-adjoin, 
subtype_rel_self, 
iff_weakening_equal, 
csm_id_adjoin_fst_type_lemma, 
istype-cubical-term, 
context-subset_wf, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-context-subset-subtype2, 
respects-equality-context-subset-term, 
csm-id-adjoin_wf-interval-1, 
term-to-path-wf, 
transprt-const_wf, 
composition-structure_wf, 
same-cubical-term_wf, 
rev_fill_term_1, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-id-type, 
rev_fill_term_0, 
csm-id-adjoin_wf-interval-0, 
cubical-type_wf, 
cubical_set_wf, 
equals-transprt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
because_Cache, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
universeEquality, 
closedConclusion, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
dependent_functionElimination, 
equalityIstype, 
setElimination, 
rename, 
inhabitedIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].
    (trans-const-path(G;cA;a)  \mmember{}  \{G  \mvdash{}  \_:(Path\_A  transprt-const(G;cA;a)  a)\})
Date html generated:
2020_05_20-PM-04_57_13
Last ObjectModification:
2020_04_14-PM-10_36_35
Theory : cubical!type!theory
Home
Index