Nuprl Lemma : rev_fill_term_wf

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[u:{Gamma.𝕀(phi)p ⊢ _:A}].
[a1:{Gamma ⊢ _:(A)[1(𝕀)][phi |⟶ u[1]]}].
  (rev_fill_term(Gamma;cA;phi;u;a1) ∈ {Gamma.𝕀 ⊢ _:A[(phi)p |⟶ u]})


Proof




Definitions occuring in Statement :  rev_fill_term: rev_fill_term(Gamma;cA;phi;u;a1) composition-structure: Gamma ⊢ Compositon(A) partial-term-1: u[1] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) subtype_rel: A ⊆B uimplies: supposing a rev-type-line: (A)- implies:  Q all: x:A. B[x] guard: {T} squash: T prop: true: True partial-term-0: u[0] partial-term-1: u[1] interval-1: 1(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s interval-rev: 1-(r) csm-adjoin: (s;u) interval-0: 0(𝕀) csm-id: 1(X) csm-ap: (s)x cubical-term-at: u(a) pi1: fst(t) pi2: snd(t) composition-structure: Gamma ⊢ Compositon(A) rev_fill_term: rev_fill_term(Gamma;cA;phi;u;a1) cube-context-adjoin: X.A context-subset: Gamma, phi cubical-type: {X ⊢ _} cubical-term: {X ⊢ _:A} and: P ∧ Q cubical-type-at: A(a) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] so_apply: x[s] face-type: 𝔽 face-presheaf: 𝔽 face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) bdd-distributive-lattice: BoundedDistributiveLattice iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  interval-rev_wf cube-context-adjoin_wf interval-type_wf cc-snd_wf subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf cc-fst_wf_interval csm-interval-type csm-id-adjoin_wf interval-1_wf partial-term-1_wf constrained-cubical-term-eqcd istype-cubical-term context-subset_wf csm-ap-term_wf face-type_wf csm-face-type thin-context-subset composition-structure_wf cubical-type_wf cubical_set_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cc-fst_wf cubical-term_wf rev-type-line_wf csm_ap_term_fst_adjoin_lemma context-subset-map csm-adjoin_wf csm_id_adjoin_fst_term_lemma squash_wf true_wf csm-ap-id-term cubical-type-cumulativity rev-type-line-0 dma-neg-dM0 partial-term-0_wf fill_term_wf rev-type-comp_wf csm-constrained-cubical-term rev-rev-type-line cubical-term-equal I_cube_pair_redex_lemma cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma DeMorgan-algebra-laws dM_wf subtype_rel_self lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf istype-cubical-type-at cubical-term-at_wf face_lattice_wf I_cube_wf fset_wf nat_wf istype-universe subset-cubical-type context-subset-is-subset iff_weakening_equal cubical-term-eqcd
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis hypothesisEquality sqequalRule equalityTransitivity equalitySymmetry applyEquality because_Cache independent_isectElimination Error :memTop,  universeIsType independent_functionElimination dependent_functionElimination equalityIstype hyp_replacement lambdaFormation_alt inhabitedIsType lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed cumulativity universeEquality setElimination rename functionExtensionality productElimination dependent_pairEquality_alt productEquality isectEquality dependent_set_memberEquality_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].
\mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].  \mforall{}[a1:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  u[1]]\}].
    (rev\_fill\_term(Gamma;cA;phi;u;a1)  \mmember{}  \{Gamma.\mBbbI{}  \mvdash{}  \_:A[(phi)p  |{}\mrightarrow{}  u]\})



Date html generated: 2020_05_20-PM-04_51_20
Last ObjectModification: 2020_05_02-PM-01_20_34

Theory : cubical!type!theory


Home Index