Nuprl Lemma : rev-type-comp_wf
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)].  (rev-type-comp(Gamma;cA) ∈ Gamma.𝕀 ⊢ Compositon((A)-))
Proof
Definitions occuring in Statement : 
rev-type-comp: rev-type-comp(Gamma;cA)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
rev-type-line: (A)-
, 
interval-type: 𝕀
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rev-type-comp: rev-type-comp(Gamma;cA)
, 
rev-type-line: (A)-
Lemmas referenced : 
interval-rev_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-snd_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-interval-type, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-adjoin_wf, 
csm-comp-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
Error :memTop, 
universeIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].
    (rev-type-comp(Gamma;cA)  \mmember{}  Gamma.\mBbbI{}  \mvdash{}  Compositon((A)-))
Date html generated:
2020_05_20-PM-04_36_49
Last ObjectModification:
2020_04_13-PM-00_43_29
Theory : cubical!type!theory
Home
Index