Nuprl Lemma : rev-rev-type-line
ā[Gamma:jā¢]. ā[A:{Gamma.š ā¢ _}]. (((A)-)- = A ā {Gamma.š ā¢ _})
Proof
Definitions occuring in Statement :
rev-type-line: (A)-
,
interval-type: š
,
cube-context-adjoin: X.A
,
cubical-type: {X ā¢ _}
,
cubical_set: CubicalSet
,
uall: ā[x:A]. B[x]
,
equal: s = t ā T
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
member: t ā T
,
uimplies: b supposing a
,
cubical-type: {X ā¢ _}
,
rev-type-line: (A)-
,
cc-snd: q
,
interval-rev: 1-(r)
,
cc-fst: p
,
csm-adjoin: (s;u)
,
csm-ap-type: (AF)s
,
cubical-term-at: u(a)
,
csm-ap: (s)x
,
pi1: fst(t)
,
pi2: snd(t)
,
cube-context-adjoin: X.A
,
all: āx:A. B[x]
,
cc-adjoin-cube: (v;u)
,
squash: āT
,
and: P ā§ Q
,
subtype_rel: A ār B
,
cubical-type-at: A(a)
,
interval-type: š
,
constant-cubical-type: (X)
,
I_cube: A(I)
,
functor-ob: ob(F)
,
interval-presheaf: š
,
lattice-point: Point(l)
,
record-select: r.x
,
dM: dM(I)
,
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
,
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
,
record-update: r[x := v]
,
ifthenelse: if b then t else f fi
,
eq_atom: x =a y
,
bfalse: ff
,
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
,
free-dist-lattice: free-dist-lattice(T; eq)
,
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice,
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
,
btrue: tt
,
DeMorgan-algebra: DeMorganAlgebra
,
so_lambda: Ī»2x.t[x]
,
prop: ā
,
guard: {T}
,
so_apply: x[s]
,
true: True
,
iff: P
āā Q
,
rev_implies: P
ā Q
,
implies: P
ā Q
Lemmas referenced :
cubical-type-equal2,
rev-type-line_wf,
cube-context-adjoin_wf,
interval-type_wf,
cubical-type_wf,
cubical_set_wf,
I_cube_wf,
fset_wf,
nat_wf,
names-hom_wf,
cube-set-restriction_wf,
I_cube_pair_redex_lemma,
cc-adjoin-cube_wf,
DeMorgan-algebra-laws,
dM_wf,
subtype_rel_self,
lattice-point_wf,
subtype_rel_set,
DeMorgan-algebra-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
DeMorgan-algebra-structure-subtype,
subtype_rel_transitivity,
bounded-lattice-structure_wf,
bounded-lattice-axioms_wf,
equal_wf,
lattice-meet_wf,
lattice-join_wf,
DeMorgan-algebra-axioms_wf,
squash_wf,
true_wf,
istype-universe,
iff_weakening_equal,
subtype_rel-equal,
dma-neg_wf,
cubical-type-at_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesisEquality,
hypothesis,
independent_isectElimination,
instantiate,
universeIsType,
sqequalRule,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
inhabitedIsType,
setElimination,
rename,
productElimination,
dependent_pairEquality_alt,
functionExtensionality,
applyEquality,
functionIsType,
dependent_functionElimination,
Error :memTop,
lambdaEquality_alt,
imageElimination,
productEquality,
cumulativity,
isectEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
dependent_set_memberEquality_alt,
independent_pairFormation,
equalityTransitivity,
equalitySymmetry,
productIsType,
equalityIstype,
applyLambdaEquality,
hyp_replacement,
universeEquality,
independent_functionElimination,
lambdaFormation_alt
Latex:
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma.\mBbbI{} \mvdash{} \_\}]. (((A)-)- = A)
Date html generated:
2020_05_20-PM-04_17_33
Last ObjectModification:
2020_04_13-PM-00_54_00
Theory : cubical!type!theory
Home
Index