Nuprl Lemma : rev-rev-type-line

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}].  (((A)-)- A ∈ {Gamma.𝕀 ⊢ _})


Proof




Definitions occuring in Statement :  rev-type-line: (A)- interval-type: 𝕀 cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-type: {X ⊢ _} rev-type-line: (A)- cc-snd: q interval-rev: 1-(r) cc-fst: p csm-adjoin: (s;u) csm-ap-type: (AF)s cubical-term-at: u(a) csm-ap: (s)x pi1: fst(t) pi2: snd(t) cube-context-adjoin: X.A all: x:A. B[x] cc-adjoin-cube: (v;u) squash: T and: P ∧ Q subtype_rel: A ⊆B cubical-type-at: A(a) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: guard: {T} so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-type-equal2 rev-type-line_wf cube-context-adjoin_wf interval-type_wf cubical-type_wf cubical_set_wf I_cube_wf fset_wf nat_wf names-hom_wf cube-set-restriction_wf I_cube_pair_redex_lemma cc-adjoin-cube_wf DeMorgan-algebra-laws dM_wf subtype_rel_self lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf squash_wf true_wf istype-universe iff_weakening_equal subtype_rel-equal dma-neg_wf cubical-type-at_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis independent_isectElimination instantiate universeIsType sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType setElimination rename productElimination dependent_pairEquality_alt functionExtensionality applyEquality functionIsType dependent_functionElimination Error :memTop,  lambdaEquality_alt imageElimination productEquality cumulativity isectEquality natural_numberEquality imageMemberEquality baseClosed dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity equalitySymmetry productIsType equalityIstype applyLambdaEquality hyp_replacement universeEquality independent_functionElimination lambdaFormation_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].    (((A)-)-  =  A)



Date html generated: 2020_05_20-PM-04_17_33
Last ObjectModification: 2020_04_13-PM-00_54_00

Theory : cubical!type!theory


Home Index