Nuprl Lemma : rev_fill_term_0
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[u:{Gamma.𝕀, (phi)p ⊢ _:A}].
∀[a1:{Gamma ⊢ _:(A)[1(𝕀)][phi |⟶ u[1]]}].
  ((rev_fill_term(Gamma;cA;phi;u;a1))[0(𝕀)]
  = comp rev-type-comp(Gamma;cA) [phi ⊢→ (u)(p;1-(q))] a1
  ∈ {Gamma ⊢ _:(A)[0(𝕀)]})
Proof
Definitions occuring in Statement : 
rev_fill_term: rev_fill_term(Gamma;cA;phi;u;a1), 
comp_term: comp cA [phi ⊢→ u] a0, 
rev-type-comp: rev-type-comp(Gamma;cA), 
composition-structure: Gamma ⊢ Compositon(A), 
partial-term-1: u[1], 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
interval-rev: 1-(r), 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cc-snd: q, 
interval-type: 𝕀, 
cc-fst: p, 
csm-ap-type: (AF)s, 
constant-cubical-type: (X), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
rev_fill_term: rev_fill_term(Gamma;cA;phi;u;a1), 
rev-type-line: (A)-, 
guard: {T}, 
csm-ap-term: (t)s, 
interval-rev: 1-(r), 
csm-adjoin: (s;u), 
cubical-term-at: u(a), 
csm-ap: (s)x, 
pi1: fst(t), 
squash: ↓T, 
prop: ℙ, 
true: True, 
partial-term-0: u[0], 
partial-term-1: u[1], 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-id: 1(X), 
pi2: snd(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
interval-1: 1(𝕀), 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
type-cat: TypeCat, 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C), 
compose: f o g, 
composition-structure: Gamma ⊢ Compositon(A), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced : 
interval-rev_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-snd_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-interval-type, 
constrained-cubical-term_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-1, 
cubical-type-cumulativity2, 
partial-term-1_wf, 
cubical-term_wf, 
context-subset_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
thin-context-subset, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
context-subset-map, 
csm-adjoin_wf, 
squash_wf, 
true_wf, 
rev-type-line-0, 
cubical-type-cumulativity, 
context-adjoin-subset2, 
cube_set_map_wf, 
context-subset-adjoin-subtype, 
interval-rev-0, 
csm-id-adjoin_wf, 
subtype_rel_self, 
fill_term_1, 
rev-type-line_wf, 
rev-type-comp_wf, 
rev-type-line-1, 
csm-id-adjoin_wf-interval-0, 
equal_wf, 
istype-universe, 
fill_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
Error :memTop, 
universeIsType, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
applyLambdaEquality, 
universeEquality, 
setElimination, 
rename
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].
\mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].  \mforall{}[a1:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  u[1]]\}].
    ((rev\_fill\_term(Gamma;cA;phi;u;a1))[0(\mBbbI{})]  =  comp  rev-type-comp(Gamma;cA)  [phi  \mvdash{}\mrightarrow{}  (u)(p;1-(q))]  a1)
Date html generated:
2020_05_20-PM-04_52_00
Last ObjectModification:
2020_04_14-AM-11_54_05
Theory : cubical!type!theory
Home
Index