Nuprl Lemma : rev_fill_term_0

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[u:{Gamma.𝕀(phi)p ⊢ _:A}].
[a1:{Gamma ⊢ _:(A)[1(𝕀)][phi |⟶ u[1]]}].
  ((rev_fill_term(Gamma;cA;phi;u;a1))[0(𝕀)]
  comp rev-type-comp(Gamma;cA) [phi ⊢→ (u)(p;1-(q))] a1
  ∈ {Gamma ⊢ _:(A)[0(𝕀)]})


Proof




Definitions occuring in Statement :  rev_fill_term: rev_fill_term(Gamma;cA;phi;u;a1) comp_term: comp cA [phi ⊢→ u] a0 rev-type-comp: rev-type-comp(Gamma;cA) composition-structure: Gamma ⊢ Compositon(A) partial-term-1: u[1] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-rev: 1-(r) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) subtype_rel: A ⊆B uimplies: supposing a rev_fill_term: rev_fill_term(Gamma;cA;phi;u;a1) rev-type-line: (A)- guard: {T} csm-ap-term: (t)s interval-rev: 1-(r) csm-adjoin: (s;u) cubical-term-at: u(a) csm-ap: (s)x pi1: fst(t) squash: T prop: true: True partial-term-0: u[0] partial-term-1: u[1] interval-0: 0(𝕀) csm-id-adjoin: [u] csm-id: 1(X) pi2: snd(t) all: x:A. B[x] implies:  Q interval-1: 1(𝕀) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g composition-structure: Gamma ⊢ Compositon(A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced :  interval-rev_wf cube-context-adjoin_wf interval-type_wf cc-snd_wf subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf cc-fst_wf csm-interval-type constrained-cubical-term_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-1 cubical-type-cumulativity2 partial-term-1_wf cubical-term_wf context-subset_wf csm-ap-term_wf face-type_wf csm-face-type thin-context-subset composition-structure_wf cubical-type_wf cubical_set_wf context-subset-map csm-adjoin_wf squash_wf true_wf rev-type-line-0 cubical-type-cumulativity context-adjoin-subset2 cube_set_map_wf context-subset-adjoin-subtype interval-rev-0 csm-id-adjoin_wf subtype_rel_self fill_term_1 rev-type-line_wf rev-type-comp_wf rev-type-line-1 csm-id-adjoin_wf-interval-0 equal_wf istype-universe fill_term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis hypothesisEquality sqequalRule equalityTransitivity equalitySymmetry applyEquality because_Cache independent_isectElimination Error :memTop,  universeIsType lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement inhabitedIsType lambdaFormation_alt equalityIstype dependent_functionElimination independent_functionElimination applyLambdaEquality universeEquality setElimination rename

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].
\mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].  \mforall{}[a1:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  u[1]]\}].
    ((rev\_fill\_term(Gamma;cA;phi;u;a1))[0(\mBbbI{})]  =  comp  rev-type-comp(Gamma;cA)  [phi  \mvdash{}\mrightarrow{}  (u)(p;1-(q))]  a1)



Date html generated: 2020_05_20-PM-04_52_00
Last ObjectModification: 2020_04_14-AM-11_54_05

Theory : cubical!type!theory


Home Index