Nuprl Lemma : interval-rev-0

[Gamma:j⊢]. (1-(0(𝕀)) 1(𝕀) ∈ {Gamma ⊢ _:𝕀})


Proof




Definitions occuring in Statement :  interval-rev: 1-(r) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] interval-1: 1(𝕀) dM1: 1 lattice-1: 1 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt fset-singleton: {x} cons: [a b] interval-rev: 1-(r) dma-neg: ¬(x) dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum cubical-term-at: u(a) interval-0: 0(𝕀) dM0: 0 lattice-0: 0 empty-fset: {} nil: [] it: opposite-lattice: opposite-lattice(L) member: t ∈ T subtype_rel: A ⊆B cubical-term: {X ⊢ _:A} uimplies: supposing a
Lemmas referenced :  interval-rev_wf interval-0_wf I_cube_wf fset_wf nat_wf cubical-term-equal interval-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut functionExtensionality sqequalRule hypothesis applyEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination universeIsType instantiate

Latex:
\mforall{}[Gamma:j\mvdash{}].  (1-(0(\mBbbI{}))  =  1(\mBbbI{}))



Date html generated: 2020_05_20-PM-02_36_59
Last ObjectModification: 2020_04_04-AM-10_10_07

Theory : cubical!type!theory


Home Index