Nuprl Lemma : transprt-const_wf

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[a:{G ⊢ _:A}].  (transprt-const(G;cA;a) ∈ {G ⊢ _:A})


Proof




Definitions occuring in Statement :  transprt-const: transprt-const(G;cA;a) composition-structure: Gamma ⊢ Compositon(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cubical-type: {X ⊢ _} csm-id: 1(X) csm-ap-type: (AF)s cc-fst: p interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap: (s)x csm-adjoin: (s;u) pi1: fst(t) interval-1: 1(𝕀) uimplies: supposing a transprt-const: transprt-const(G;cA;a) squash: T true: True
Lemmas referenced :  transprt_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf csm-comp-structure_wf subset-cubical-term2 sub_cubical_set_self csm-id_wf csm-ap-id-type istype-cubical-term cubical_set_cumulativity-i-j cubical-type-cumulativity2 composition-structure_wf cubical-type_wf cubical_set_wf cubical-term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality hypothesis applyEquality sqequalRule setElimination rename productElimination independent_isectElimination equalitySymmetry axiomEquality equalityTransitivity isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].
    (transprt-const(G;cA;a)  \mmember{}  \{G  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-04_39_03
Last ObjectModification: 2020_04_14-PM-10_28_55

Theory : cubical!type!theory


Home Index