Step
*
of Lemma
transprt-const_wf
No Annotations
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[a:{G ⊢ _:A}]. (transprt-const(G;cA;a) ∈ {G ⊢ _:A})
BY
{ (Auto
THEN (InstLemmaIJ `transprt_wf` [⌜G⌝;⌜(A)p⌝;⌜(cA)p⌝]⋅ THENA Auto)
THEN (Subst' ((A)p)[0(𝕀)] ~ (A)1(G) -1 THENA (CsmUnfolding THEN Auto))
THEN (Subst' ((A)p)[1(𝕀)] ~ (A)1(G) -1 THENA (CsmUnfolding THEN Auto))
THEN (InstHyp [⌜a⌝] (-1) ⋅ THENA Auto)) }
1
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. cA : G +⊢ Compositon(A)
4. a : {G ⊢ _:A}
5. ∀[a:{G ⊢ _:(A)1(G)}]. (transprt(G;(cA)p;a) ∈ {G ⊢ _:(A)1(G)})
6. transprt(G;(cA)p;a) ∈ {G ⊢ _:(A)1(G)}
⊢ transprt-const(G;cA;a) ∈ {G ⊢ _:A}
Latex:
Latex:
No Annotations
\mforall{}[G:j\mvdash{}]. \mforall{}[A:\{G \mvdash{} \_\}]. \mforall{}[cA:G +\mvdash{} Compositon(A)]. \mforall{}[a:\{G \mvdash{} \_:A\}].
(transprt-const(G;cA;a) \mmember{} \{G \mvdash{} \_:A\})
By
Latex:
(Auto
THEN (InstLemmaIJ `transprt\_wf` [\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}(A)p\mkleeneclose{};\mkleeneopen{}(cA)p\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Subst' ((A)p)[0(\mBbbI{})] \msim{} (A)1(G) -1 THENA (CsmUnfolding THEN Auto))
THEN (Subst' ((A)p)[1(\mBbbI{})] \msim{} (A)1(G) -1 THENA (CsmUnfolding THEN Auto))
THEN (InstHyp [\mkleeneopen{}a\mkleeneclose{}] (-1) \mcdot{} THENA Auto))
Home
Index