Step
*
1
of Lemma
transEquiv-trans-eq2
1. G : CubicalSet{j}
2. A : {G ā¢ _:cš}
3. B : {G ā¢ _:cš}
4. p : {G ā¢ _:(Path_cš A B)}
5. ā[I:fset(ā)]. ā[a:G(I)]. (p(a) ā (Path_cš A B)(a))
6. I : fset(ā)
7. a : G(I)
8. J : fset(ā)
9. h : J ā¶ I
10. u : decode(A)(h(a))
ā¢ ((snd((p(s(a)) I+new-name(I) 1 <new-name(I)>))) J new-name(J) h,new-name(I)=new-name(J) 0 ā
(compOp(A) J new-name(J) s(h(a)) 0 ā
u))
= ((snd((p J+new-name(J) s(h(a)) J+new-name(J) 1 <new-name(J)>))) J new-name(J) 1 0 discr(ā
)
(compOp(A) J new-name(J) s(h(a)) 0 ā
u))
ā decode(B)(h(a))
BY
{ ((InstLemma `cubical-term-at-morph` [āparm{j}ā;āparm{i'}ā;āGā;ā(Path_cš A B)ā;āpā]ā
THENA Auto)
THEN (InstHyp [āIā;āaā;āI+new-name(I)ā; s ] (-1)ā
THENA Auto)
THEN (RWO "path-type-ap-morph" (-1) THENA Auto)
THEN (Assert s(h(a)) = h ā
s(a) ā G(J+new-name(J)) BY
Auto)
THEN (InstHyp [āIā;āaā;āJ+new-name(J)ā; āh ā
sā ] (-3)ā
THENA Auto)
THEN (RWO "path-type-ap-morph" (-1) THENA Auto)
THEN (ApFunToHypEquands `Z' āp(Z)ā ā(Path_cš A B)(Z)ā (-2)ā
THENA (Fold `member` 0
THEN ((InstLemma `cubical-term-at_wf` [āparm{j}ā;āparm{i'}ā;āGā;ā(Path_cš A B)ā;āpā]ā
THENM BHyp -1)
THENA Auto
)
)
)
THEN (ApFunToHypEquands `Z' ā(Path_cš A B)(Z)ā āš'ā (-3)ā
THEN Try ((Eq
ORELSE (Fold `member` 0
THEN InstLemma `cubical-type-at_wf` [āparm{j}ā;āparm{i'}ā]ā
THEN BHyp -1
THEN Auto)
))
)
THEN (Assert (Ī»K,g. (p(a) K h ā
s ā
g)) = p(s(h(a))) ā (Path_cš A B)(h ā
s(a)) BY
Eq)
THEN RepeatFor 4 (Thin (-2))
THEN (RWO "path-type-at" (-2) THENA Auto)
THEN (EqTypeHD (-2) THENA (D -1 THEN Auto))
THEN (EqTypeHD (-3) THENA (D -1 THEN Auto))
THEN (RWO "path-type-at" (-1) THENA Auto)
THEN (EqTypeHD (-1) THENA (D -1 THEN Auto))
THEN (EqTypeHD (-2) THENA (D -1 THEN Auto))
THEN All Reduce) }
1
1. G : CubicalSet{j}
2. A : {G ā¢ _:cš}
3. B : {G ā¢ _:cš}
4. p : {G ā¢ _:(Path_cš A B)}
5. ā[I:fset(ā)]. ā[a:G(I)]. (p(a) ā (Path_cš A B)(a))
6. I : fset(ā)
7. a : G(I)
8. J : fset(ā)
9. h : J ā¶ I
10. u : decode(A)(h(a))
11. ā[I:fset(ā)]. ā[a:G(I)]. ā[J:fset(ā)]. ā[f:J ā¶ I]. ((p(a) a f) = p(f(a)) ā (Path_cš A B)(f(a)))
12. (Ī»K,g. (p(a) K s ā
g)) = p(s(a)) ā (J:fset(ā) ā¶ f:J ā¶ I+new-name(I) ā¶ u:Point(dM(J)) ā¶ cš(f(s(a))))
13. āJ,K:fset(ā). āf:J ā¶ I+new-name(I). āg:K ā¶ J. āu:Point(dM(J)).
((p(a) J s ā
f u f(s(a)) g) = (p(a) K s ā
f ā
g (u f(s(a)) g)) ā cš(g(f(s(a)))))
14. ((p(a) I+new-name(I) s ā
1 0) = A(s(a)) ā cš(s(a))) ā§ ((p(a) I+new-name(I) s ā
1 1) = B(s(a)) ā cš(s(a)))
15. (Ī»K,g. (p(a) K h ā
s ā
g)) = p(s(h(a))) ā (J1:fset(ā) ā¶ f:J1 ā¶ J+new-name(J) ā¶ u:Point(dM(J1)) ā¶ cš(f(h ā
s(a)))\000C)
16. āJ1,K:fset(ā). āf:J1 ā¶ J+new-name(J). āg:K ā¶ J1. āu:Point(dM(J1)).
((p(a) J1 h ā
s ā
f u f(h ā
s(a)) g) = (p(a) K h ā
s ā
f ā
g (u f(h ā
s(a)) g)) ā cš(g(f(h ā
s(a)))))
17. ((p(a) J+new-name(J) h ā
s ā
1 0) = A(h ā
s(a)) ā cš(h ā
s(a)))
ā§ ((p(a) J+new-name(J) h ā
s ā
1 1) = B(h ā
s(a)) ā cš(h ā
s(a)))
ā¢ ((snd((p(s(a)) I+new-name(I) 1 <new-name(I)>))) J new-name(J) h,new-name(I)=new-name(J) 0 ā
(compOp(A) J new-name(J) s(h(a)) 0 ā
u))
= ((snd((p J+new-name(J) s(h(a)) J+new-name(J) 1 <new-name(J)>))) J new-name(J) 1 0 discr(ā
)
(compOp(A) J new-name(J) s(h(a)) 0 ā
u))
ā decode(B)(h(a))
Latex:
Latex:
1. G : CubicalSet\{j\}
2. A : \{G \mvdash{} \_:c\mBbbU{}\}
3. B : \{G \mvdash{} \_:c\mBbbU{}\}
4. p : \{G \mvdash{} \_:(Path\_c\mBbbU{} A B)\}
5. \mforall{}[I:fset(\mBbbN{})]. \mforall{}[a:G(I)]. (p(a) \mmember{} (Path\_c\mBbbU{} A B)(a))
6. I : fset(\mBbbN{})
7. a : G(I)
8. J : fset(\mBbbN{})
9. h : J {}\mrightarrow{} I
10. u : decode(A)(h(a))
\mvdash{} ((snd((p(s(a)) I+new-name(I) 1 <new-name(I)>))) J new-name(J) h,new-name(I)=new-name(J) 0 \mcdot{}
(compOp(A) J new-name(J) s(h(a)) 0 \mcdot{} u))
= ((snd((p J+new-name(J) s(h(a)) J+new-name(J) 1 <new-name(J)>))) J new-name(J) 1 0 discr(\mcdot{})
(compOp(A) J new-name(J) s(h(a)) 0 \mcdot{} u))
By
Latex:
((InstLemma `cubical-term-at-morph` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}(Path\_c\mBbbU{} A B)\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstHyp [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}I+new-name(I)\mkleeneclose{}; s ] (-1)\mcdot{} THENA Auto)
THEN (RWO "path-type-ap-morph" (-1) THENA Auto)
THEN (Assert s(h(a)) = h \mcdot{} s(a) BY
Auto)
THEN (InstHyp [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}J+new-name(J)\mkleeneclose{}; \mkleeneopen{}h \mcdot{} s\mkleeneclose{} ] (-3)\mcdot{} THENA Auto)
THEN (RWO "path-type-ap-morph" (-1) THENA Auto)
THEN (ApFunToHypEquands `Z' \mkleeneopen{}p(Z)\mkleeneclose{} \mkleeneopen{}(Path\_c\mBbbU{} A B)(Z)\mkleeneclose{} (-2)\mcdot{}
THENA (Fold `member` 0
THEN ((InstLemma `cubical-term-at\_wf` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}(Path\_c\mBbbU{} A B)\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{}]\mcdot{}
THENM BHyp -1
)
THENA Auto
)
)
)
THEN (ApFunToHypEquands `Z' \mkleeneopen{}(Path\_c\mBbbU{} A B)(Z)\mkleeneclose{} \mkleeneopen{}\mBbbU{}'\mkleeneclose{} (-3)\mcdot{}
THEN Try ((Eq
ORELSE (Fold `member` 0
THEN InstLemma `cubical-type-at\_wf` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{}]\mcdot{}
THEN BHyp -1
THEN Auto)
))
)
THEN (Assert (\mlambda{}K,g. (p(a) K h \mcdot{} s \mcdot{} g)) = p(s(h(a))) BY
Eq)
THEN RepeatFor 4 (Thin (-2))
THEN (RWO "path-type-at" (-2) THENA Auto)
THEN (EqTypeHD (-2) THENA (D -1 THEN Auto))
THEN (EqTypeHD (-3) THENA (D -1 THEN Auto))
THEN (RWO "path-type-at" (-1) THENA Auto)
THEN (EqTypeHD (-1) THENA (D -1 THEN Auto))
THEN (EqTypeHD (-2) THENA (D -1 THEN Auto))
THEN All Reduce)
Home
Index