Nuprl Lemma : transEquiv-trans-eq2
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[p:{G ⊢ _:(Path_c𝕌 A B)}].
  (transEquivFun(p)
  = (λI,a,J,h,u. ((snd((p(s(h(a))) J+new-name(J) 1 <new-name(J)>))) J new-name(J) 1 0 discr(⋅) 
                  (compOp(A) J new-name(J) s(h(a)) 0 ⋅ u)))
  ∈ {G ⊢ _:(decode(A) ⟶ decode(B))})
Proof
Definitions occuring in Statement : 
transEquiv-trans: transEquivFun(p)
, 
universe-comp-op: compOp(t)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
path-type: (Path_A a b)
, 
discrete-cubical-term: discr(t)
, 
cubical-fun: (A ⟶ B)
, 
cubical-term-at: u(a)
, 
cubical-term: {X ⊢ _:A}
, 
face_lattice: face_lattice(I)
, 
cube-set-restriction: f(s)
, 
cubical_set: CubicalSet
, 
nc-s: s
, 
new-name: new-name(I)
, 
add-name: I+i
, 
nh-id: 1
, 
dM_inc: <x>
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
pi2: snd(t)
, 
apply: f a
, 
lambda: λx.A[x]
, 
equal: s = t ∈ T
, 
lattice-0: 0
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-term-at: u(a)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cubical-fun: (A ⟶ B)
, 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
cubical-universe: c𝕌
, 
and: P ∧ Q
, 
names: names(I)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
face-presheaf: 𝔽
, 
cube-set-restriction: f(s)
, 
pi2: snd(t)
, 
fl-morph: <f>
, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
lattice-0: 0
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
, 
fibrant-type: FibrantType(X)
, 
formal-cube: formal-cube(I)
, 
names-hom: I ⟶ J
, 
composition-op: Gamma ⊢ CompOp(A)
, 
closed-cubical-universe: cc𝕌
, 
closed-type-to-type: closed-type-to-type(T)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
nc-e': g,i=j
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
bnot: ¬bb
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
csm-composition: (comp)sigma
, 
cand: A c∧ B
, 
top: Top
Lemmas referenced : 
cubical-term-at_wf, 
transEquiv-trans-eq, 
cubical-fun_wf, 
universe-decode_wf, 
cubical_type_at_pair_lemma, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
names-hom_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-fun-equal2, 
transEquiv-trans_wf, 
cubical-type-at_wf, 
istype-cubical-term, 
path-type_wf, 
cubical-universe_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
cubical-term-at-morph, 
add-name_wf, 
new-name_wf, 
nc-s_wf, 
f-subset-add-name, 
path-type-ap-morph, 
cube-set-restriction-comp, 
nh-comp_wf, 
path-type-at, 
nh-id_wf, 
dM_inc_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
member-empty-cubical-subset, 
face-presheaf_wf2, 
lattice-0_wf, 
face_lattice_wf, 
subtype_rel_self, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
nc-0_wf, 
iff_weakening_equal, 
cube-set-restriction-when-id, 
s-comp-nc-0-new, 
cubical-path-condition-0, 
cubical-path-condition_wf, 
universe-comp-op_wf, 
nc-1_wf, 
s-comp-nc-1-new, 
cube_set_restriction_pair_lemma, 
nc-e'-lemma2, 
formal-cube_wf1, 
cubical-type_wf, 
I_cube_pair_redex_lemma, 
universe-type-at, 
s-comp-if-lemma1, 
nh-comp-assoc, 
nh-id-right, 
universe-path-type-lemma-0, 
nc-e'-lemma1, 
universe-path-type-lemma-1, 
nc-e'_wf, 
istype-top, 
cubical_type_ap_morph_pair_lemma, 
universe-type_wf, 
nh-id-left, 
pi1_wf_top, 
interval-type-ap-morph, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM-lift-inc, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
assert_elim, 
bnot_wf, 
bool_wf, 
eq_int_eq_true, 
bfalse_wf, 
btrue_neq_bfalse, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
btrue_wf, 
not_assert_elim, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
nc-e'-lemma3, 
fibrant-type_wf_formal-cube, 
composition-op_wf, 
cubical-type-cumulativity2, 
pi2_wf, 
csm-ap-context-map, 
csm-ap-type_wf, 
context-map_wf, 
csm-composition_wf, 
cubical-term_wf, 
cubical-subset_wf, 
csm-comp_wf, 
subset-iota_wf, 
cubical-path-0_wf, 
cubical-path-1_wf, 
subtype_rel_dep_function, 
csm-ap-comp-type, 
cube_set_map_wf, 
context-map-comp, 
csm-comp-assoc, 
cubical-term-eqcd, 
subtype_rel_wf, 
csm-cubical-path-0-subtype, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-cubical-path-1-subtype, 
cubical-path-condition'_wf, 
top_wf, 
istype-void, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
sqequalRule, 
applyLambdaEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
dependent_functionElimination, 
Error :memTop, 
setElimination, 
rename, 
applyEquality, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeIsType, 
functionExtensionality, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
intEquality, 
natural_numberEquality, 
universeEquality, 
independent_pairFormation, 
productIsType, 
equalityElimination, 
independent_pairEquality, 
productEquality, 
cumulativity, 
isectEquality, 
unionElimination, 
voidElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
approximateComputation, 
int_eqEquality, 
functionEquality, 
dependent_pairEquality_alt, 
isect_memberEquality_alt
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}].
    (transEquivFun(p)
    =  (\mlambda{}I,a,J,h,u.  ((snd((p(s(h(a)))  J+new-name(J)  1  <new-name(J)>)))  J  new-name(J)  1  0  discr(\mcdot{}) 
                                    (compOp(A)  J  new-name(J)  s(h(a))  0  \mcdot{}  u))))
Date html generated:
2020_05_20-PM-07_38_50
Last ObjectModification:
2020_05_01-AM-11_21_16
Theory : cubical!type!theory
Home
Index