Nuprl Lemma : universe-path-type-lemma-0

G:j⊢. ∀A,B:{G ⊢ _:c𝕌}. ∀p:{G ⊢ _:(Path_c𝕌 B)}. ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀v:G(I+new-name(I)).
  (universe-type(A;I+new-name(I);v)((new-name(I)0) ⋅ f)
  fst((p(v) I+new-name(I) 1 <new-name(I)>))((new-name(I)0) ⋅ f)
  ∈ Type)


Proof




Definitions occuring in Statement :  universe-type: universe-type(t;I;a) cubical-universe: c𝕌 path-type: (Path_A b) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) I_cube: A(I) cubical_set: CubicalSet nc-0: (i0) new-name: new-name(I) add-name: I+i nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J dM_inc: <x> fset: fset(T) nat: pi1: fst(t) all: x:A. B[x] apply: a universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B squash: T cubical-universe: c𝕌 closed-cubical-universe: cc𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT) closed-type-to-type: closed-type-to-type(T) and: P ∧ Q names: names(I) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: fibrant-type: FibrantType(X) pi1: fst(t) so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] formal-cube: formal-cube(I) implies:  Q true: True universe-type: universe-type(t;I;a) DeMorgan-algebra: DeMorganAlgebra guard: {T} iff: ⇐⇒ Q rev_implies:  Q nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-0: (i0) empty-fset: {} nil: [] it: lattice-0: 0 record-select: r.x free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bool: 𝔹 unit: Unit uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) lattice-point: Point(l) cubical-type-at: A(a) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 cubical-term-at: u(a)
Lemmas referenced :  cubical-term-at_wf add-name_wf new-name_wf path-type-at cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma I_cube_wf names-hom_wf fset_wf nat_wf istype-cubical-term path-type_wf cubical-universe_wf istype-cubical-universe-term cubical_set_wf nh-id_wf nh-comp_wf nc-0_wf dM_inc_wf trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self pi1_wf_top cubical-type_wf formal-cube_wf1 lifting-strict-spread strict4-spread cubical-type-at_wf I_cube_pair_redex_lemma equal_wf squash_wf true_wf istype-universe cube_set_restriction_pair_lemma csm-ap-type-at csm-ap-context-map nh-id-left dM0_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-inc subtype_rel_self iff_weakening_equal eq_int_wf eqtt_to_assert assert_of_eq_int dM0-sq-0 eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int eq_int_eq_true btrue_wf not_assert_elim btrue_neq_bfalse full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf dM-lift-0-sq interval-type-ap-morph cubical-type-ap-morph_wf interval-type_wf nc-1_wf cube-set-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule Error :memTop,  applyLambdaEquality imageMemberEquality baseClosed imageElimination dependent_functionElimination productElimination universeIsType dependent_set_memberEquality_alt intEquality independent_isectElimination natural_numberEquality independent_pairEquality equalityIstype independent_functionElimination hyp_replacement universeEquality productEquality cumulativity isectEquality unionElimination equalityElimination dependent_pairFormation_alt promote_hyp voidElimination approximateComputation int_eqEquality

Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}.  \mforall{}p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}.  \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}v:G(I+new-name(I)).
    (universe-type(A;I+new-name(I);v)((new-name(I)0)  \mcdot{}  f)
    =  fst((p(v)  I+new-name(I)  1  <new-name(I)>))((new-name(I)0)  \mcdot{}  f))



Date html generated: 2020_05_20-PM-07_35_56
Last ObjectModification: 2020_04_28-PM-01_19_11

Theory : cubical!type!theory


Home Index