Step
*
of Lemma
universe-path-type-lemma-0
No Annotations
βG:jβ’. βA,B:{G β’ _:cπ}. βp:{G β’ _:(Path_cπ A B)}. βI,J:fset(β). βf:J βΆ I. βv:G(I+new-name(I)).
(universe-type(A;I+new-name(I);v)((new-name(I)0) β
f)
= fst((p(v) I+new-name(I) 1 <new-name(I)>))((new-name(I)0) β
f)
β Type)
BY
{ (Introsβ
THEN (InstLemma `cubical-term-at_wf` [βparm{j}β;βparm{i'}β;βGβ;β(Path_cπ A B)β;βpβ;βI+new-name(I)β;βvβ]β
THENA Auto)
THEN DupHyp (-1)
THEN (RWO "path-type-at" (-1) THENA Auto)
THEN ((MemTypeHD (-1) THENA (D -1 THEN Auto)) THEN Fold `member` (-2))
THEN (MemTypeHD (-2) THENA (D -1 THEN Auto))
THEN Fold `member` (-3)
THEN RepUR ``cubical-universe closed-cubical-universe`` -1
THEN RepUR ``cubical-universe closed-cubical-universe`` -2
THEN RepUR ``cubical-universe closed-cubical-universe`` -3
THEN RepUR ``closed-type-to-type csm-fibrant-type`` -1
THEN RepUR ``closed-type-to-type csm-fibrant-type`` -2
THEN RepUR ``closed-type-to-type csm-fibrant-type`` -3
THEN D -1
THEN Thin (-1)
β
) }
1
1. G : CubicalSet{j}
2. A : {G β’ _:cπ}
3. B : {G β’ _:cπ}
4. p : {G β’ _:(Path_cπ A B)}
5. I : fset(β)
6. J : fset(β)
7. f : J βΆ I
8. v : G(I+new-name(I))
9. p(v) β (Path_cπ A B)(v)
10. p(v) β J:fset(β) βΆ f:J βΆ I+new-name(I) βΆ u:Point(dM(J)) βΆ FibrantType(formal-cube(J))
11. βJ,K:fset(β). βf:J βΆ I+new-name(I). βg:K βΆ J. βu:Point(dM(J)).
(let A,cA = p(v) J f u in <(A)<g>, (cA)<g>> = (p(v) K f β
g (u f(v) g)) β FibrantType(formal-cube(K)))
12. (p(v) I+new-name(I) 1 0) = A(v) β FibrantType(formal-cube(I+new-name(I)))
β’ universe-type(A;I+new-name(I);v)((new-name(I)0) β
f)
= fst((p(v) I+new-name(I) 1 <new-name(I)>))((new-name(I)0) β
f)
β Type
Latex:
Latex:
No Annotations
\mforall{}G:j\mvdash{}. \mforall{}A,B:\{G \mvdash{} \_:c\mBbbU{}\}. \mforall{}p:\{G \mvdash{} \_:(Path\_c\mBbbU{} A B)\}. \mforall{}I,J:fset(\mBbbN{}). \mforall{}f:J {}\mrightarrow{} I. \mforall{}v:G(I+new-name(I)).
(universe-type(A;I+new-name(I);v)((new-name(I)0) \mcdot{} f)
= fst((p(v) I+new-name(I) 1 <new-name(I)>))((new-name(I)0) \mcdot{} f))
By
Latex:
(Intros\mcdot{}
THEN (InstLemma `cubical-term-at\_wf` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}(Path\_c\mBbbU{} A B)\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}I+new-name(I)\mkleeneclose{};
\mkleeneopen{}v\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN DupHyp (-1)
THEN (RWO "path-type-at" (-1) THENA Auto)
THEN ((MemTypeHD (-1) THENA (D -1 THEN Auto)) THEN Fold `member` (-2))
THEN (MemTypeHD (-2) THENA (D -1 THEN Auto))
THEN Fold `member` (-3)
THEN RepUR ``cubical-universe closed-cubical-universe`` -1
THEN RepUR ``cubical-universe closed-cubical-universe`` -2
THEN RepUR ``cubical-universe closed-cubical-universe`` -3
THEN RepUR ``closed-type-to-type csm-fibrant-type`` -1
THEN RepUR ``closed-type-to-type csm-fibrant-type`` -2
THEN RepUR ``closed-type-to-type csm-fibrant-type`` -3
THEN D -1
THEN Thin (-1)
\mcdot{})
Home
Index