Nuprl Lemma : context-map-comp

[I,J,K:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J].  (<f ⋅ g> = <f> o <g> ∈ formal-cube(K) ⟶ formal-cube(I))


Proof




Definitions occuring in Statement :  csm-comp: F context-map: <rho> cube_set_map: A ⟶ B formal-cube: formal-cube(I) nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-cat: CubeCat all: x:A. B[x] cube_set_map: A ⟶ B formal-cube: formal-cube(I) Yoneda: Yoneda(I) context-map: <rho> ps-context-map: <rho> csm-comp: F pscm-comp: F
Lemmas referenced :  ps-ps-context-map-comp cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].    (<f  \mcdot{}  g>  =  <f>  o  <g>)



Date html generated: 2020_05_20-PM-01_42_15
Last ObjectModification: 2020_04_03-PM-04_01_11

Theory : cubical!type!theory


Home Index