Nuprl Lemma : ps-ps-context-map-comp
∀[C:SmallCategory]. ∀[I,J,K:cat-ob(C)]. ∀[f:cat-arrow(C) J I]. ∀[g:cat-arrow(C) K J].
  (<cat-comp(C) K J I g f> = <f> o <g> ∈ Yoneda(K) ⟶ Yoneda(I))
Proof
Definitions occuring in Statement : 
pscm-comp: G o F, 
ps-context-map: <rho>, 
psc_map: A ⟶ B, 
Yoneda: Yoneda(I), 
uall: ∀[x:A]. B[x], 
apply: f a, 
equal: s = t ∈ T, 
cat-comp: cat-comp(C), 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
cat-arrow: cat-arrow(C), 
pi1: fst(t), 
pi2: snd(t), 
I_set: A(I), 
functor-ob: ob(F), 
Yoneda: Yoneda(I), 
uimplies: b supposing a, 
ps-context-map: <rho>, 
pscm-comp: G o F, 
compose: f o g
Lemmas referenced : 
pscm-equal2, 
Yoneda_wf, 
ps-context-map_wf, 
cat-comp_wf, 
subtype_rel_self, 
I_set_wf, 
pscm-comp_wf, 
I_set_pair_redex_lemma, 
arrow_pair_lemma, 
cat-comp-assoc, 
cat-arrow_wf, 
cat-ob_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
lambdaFormation_alt, 
Error :memTop, 
equalitySymmetry, 
universeIsType, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I,J,K:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  J  I].  \mforall{}[g:cat-arrow(C)  K  J].
    (<cat-comp(C)  K  J  I  g  f>  =  <f>  o  <g>)
Date html generated:
2020_05_20-PM-01_24_22
Last ObjectModification:
2020_04_03-PM-01_04_26
Theory : presheaf!models!of!type!theory
Home
Index