Nuprl Lemma : transEquiv-trans_wf
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[p:{G ⊢ _:(Path_c𝕌 A B)}].  (transEquivFun(p) ∈ {G ⊢ _:(decode(A) ⟶ decode(B))})
Proof
Definitions occuring in Statement : 
transEquiv-trans: transEquivFun(p)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
path-type: (Path_A a b)
, 
cubical-fun: (A ⟶ B)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
transEquiv-trans: transEquivFun(p)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equiv-fun_wf, 
universe-decode_wf, 
transEquiv_wf, 
istype-cubical-term, 
path-type_wf, 
cubical-universe_wf, 
istype-cubical-universe-term, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination, 
universeIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}].
    (transEquivFun(p)  \mmember{}  \{G  \mvdash{}  \_:(decode(A)  {}\mrightarrow{}  decode(B))\})
Date html generated:
2020_05_20-PM-07_34_43
Last ObjectModification:
2020_05_01-AM-09_52_15
Theory : cubical!type!theory
Home
Index