Nuprl Lemma : transEquiv-trans_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[p:{G ⊢ _:(Path_c𝕌 B)}].  (transEquivFun(p) ∈ {G ⊢ _:(decode(A) ⟶ decode(B))})


Proof




Definitions occuring in Statement :  transEquiv-trans: transEquivFun(p) universe-decode: decode(t) cubical-universe: c𝕌 path-type: (Path_A b) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T transEquiv-trans: transEquivFun(p) all: x:A. B[x]
Lemmas referenced :  equiv-fun_wf universe-decode_wf transEquiv_wf istype-cubical-term path-type_wf cubical-universe_wf istype-cubical-universe-term cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry instantiate isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_functionElimination universeIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}].
    (transEquivFun(p)  \mmember{}  \{G  \mvdash{}  \_:(decode(A)  {}\mrightarrow{}  decode(B))\})



Date html generated: 2020_05_20-PM-07_34_43
Last ObjectModification: 2020_05_01-AM-09_52_15

Theory : cubical!type!theory


Home Index