Step
*
1
of Lemma
uabeta-type_wf
1. G : CubicalSet{j}
2. A : {G ā¢ _:cš}
3. B : {G ā¢ _:cš}
4. ā[f:G:CubicalSet{i|j} ā¶ A:{G ā¢ _:cš} ā¶ TransportType(A)]. G ā¢ uabetatype(G;A;B;f)
5. G1 : CubicalSet{i|j}
6. A1 : {G1 ā¢ _:cš}
ā¢ Ī»p.PathTransport(p) ā TransportType(A1)
BY
{ (All Thin
THEN RenameVar `G' 1
THEN RenameVar `A' 2
THEN (InstLemma `cubical-term_wf` [āparm{i|j}ā;āparm{i'}ā;āGā;ācšā]ā
THENA Auto)
THEN Unfold `transport-type` 0
THEN Unfold `uall` 0
THEN (MemTypeCD THENW Auto)
THEN (InstLemma `cubical-term_wf` [parm{i|j};āparm{i'}ā;āGā;ā(Path_cš A B)ā]ā
THENA Auto)
THEN MemCD
THEN Auto) }
Latex:
Latex:
1. G : CubicalSet\{j\}
2. A : \{G \mvdash{} \_:c\mBbbU{}\}
3. B : \{G \mvdash{} \_:c\mBbbU{}\}
4. \mforall{}[f:G:CubicalSet\{i|j\} {}\mrightarrow{} A:\{G \mvdash{} \_:c\mBbbU{}\} {}\mrightarrow{} TransportType(A)]. G \mvdash{} uabetatype(G;A;B;f)
5. G1 : CubicalSet\{i|j\}
6. A1 : \{G1 \mvdash{} \_:c\mBbbU{}\}
\mvdash{} \mlambda{}p.PathTransport(p) \mmember{} TransportType(A1)
By
Latex:
(All Thin
THEN RenameVar `G' 1
THEN RenameVar `A' 2
THEN (InstLemma `cubical-term\_wf` [\mkleeneopen{}parm\{i|j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Unfold `transport-type` 0
THEN Unfold `uall` 0
THEN (MemTypeCD THENW Auto)
THEN (InstLemma `cubical-term\_wf` [parm\{i|j\};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{};\mkleeneopen{}(Path\_c\mBbbU{} A B)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN MemCD
THEN Auto)
Home
Index