Nuprl Lemma : uabeta-type_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  G ⊢ uabeta-type(G;A;B)


Proof




Definitions occuring in Statement :  uabeta-type: uabeta-type(G;A;B) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uabetatype: uabetatype(G;A;B;f) uabeta-type: uabeta-type(G;A;B) transport-type: TransportType(A)
Lemmas referenced :  uabetatype_wf istype-cubical-universe-term cubical_set_wf cubical-term_wf cubical-universe_wf path-type_wf path-trans_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis lambdaEquality_alt instantiate dependent_functionElimination universeIsType sqequalRule equalityTransitivity equalitySymmetry rename isect_memberEquality_alt

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    G  \mvdash{}  uabeta-type(G;A;B)



Date html generated: 2020_05_20-PM-07_43_07
Last ObjectModification: 2020_04_30-AM-11_46_24

Theory : cubical!type!theory


Home Index