Nuprl Lemma : uabetatype_wf
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:G:CubicalSet{i|j} ⟶ A:{G ⊢ _:c𝕌} ⟶ TransportType(A)].  G ⊢ uabetatype(G;A;B;f)
Proof
Definitions occuring in Statement : 
uabetatype: uabetatype(G;A;B;f)
, 
transport-type: TransportType(A)
, 
cubical-universe: c𝕌
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
uabetatype: uabetatype(G;A;B;f)
, 
transport-type: TransportType(A)
Lemmas referenced : 
cubical-equiv_wf, 
universe-decode_wf, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cc-fst_wf, 
path-type_wf, 
csm-ap-term_wf, 
cc-snd_wf, 
cubical-term-eqcd, 
equiv-fun_wf, 
cubical-app_wf_fun, 
cubical_set_wf, 
istype-cubical-universe-term, 
transport-type_wf, 
cubical-type_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-equiv-p, 
cube_set_map_wf, 
subtype_rel_self, 
iff_weakening_equal, 
univ-a_wf, 
cubical-universe-p, 
cubical-universe_wf, 
csm-universe-decode, 
csm-ap-term-universe, 
cubical-term_wf, 
cubical-fun_wf, 
cubical-pi_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
sqequalRule, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
functionIsType, 
dependent_functionElimination, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
Error :memTop, 
cumulativity, 
lambdaFormation_alt, 
equalityIstype
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:G:CubicalSet\{i|j\}  {}\mrightarrow{}  A:\{G  \mvdash{}  \_:c\mBbbU{}\}  {}\mrightarrow{}  TransportType(A)].
    G  \mvdash{}  uabetatype(G;A;B;f)
Date html generated:
2020_05_20-PM-07_42_51
Last ObjectModification:
2020_04_30-AM-11_39_45
Theory : cubical!type!theory
Home
Index