Nuprl Lemma : uabetatype_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:G:CubicalSet{i|j} ⟶ A:{G ⊢ _:c𝕌} ⟶ TransportType(A)].  G ⊢ uabetatype(G;A;B;f)


Proof




Definitions occuring in Statement :  uabetatype: uabetatype(G;A;B;f) transport-type: TransportType(A) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] true: True squash: T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uabetatype: uabetatype(G;A;B;f) transport-type: TransportType(A)
Lemmas referenced :  cubical-equiv_wf universe-decode_wf csm-ap-type_wf cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf cubical-term-eqcd equiv-fun_wf cubical-app_wf_fun cubical_set_wf istype-cubical-universe-term transport-type_wf cubical-type_wf equal_wf squash_wf true_wf istype-universe cubical-equiv-p cube_set_map_wf subtype_rel_self iff_weakening_equal univ-a_wf cubical-universe-p cubical-universe_wf csm-universe-decode csm-ap-term-universe cubical-term_wf cubical-fun_wf cubical-pi_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt hyp_replacement universeIsType functionIsType dependent_functionElimination natural_numberEquality imageElimination universeEquality inhabitedIsType imageMemberEquality baseClosed productElimination independent_functionElimination Error :memTop,  cumulativity lambdaFormation_alt equalityIstype

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:G:CubicalSet\{i|j\}  {}\mrightarrow{}  A:\{G  \mvdash{}  \_:c\mBbbU{}\}  {}\mrightarrow{}  TransportType(A)].
    G  \mvdash{}  uabetatype(G;A;B;f)



Date html generated: 2020_05_20-PM-07_42_51
Last ObjectModification: 2020_04_30-AM-11_39_45

Theory : cubical!type!theory


Home Index