Nuprl Lemma : cubical-universe-p

[G:j⊢]. ∀[A:{G ⊢ _:c𝕌}]. ∀[T:{G ⊢ _}].  ((A)p ∈ {G.T ⊢ _:c𝕌})


Proof




Definitions occuring in Statement :  cubical-universe: c𝕌 cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  csm-ap-term-p cubical-universe_wf cubical-type-cumulativity csm-cubical-universe cubical-type_wf istype-cubical-universe-term cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality hypothesis applyEquality sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry universeIsType dependent_functionElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[T:\{G  \mvdash{}  \_\}].    ((A)p  \mmember{}  \{G.T  \mvdash{}  \_:c\mBbbU{}\})



Date html generated: 2020_05_20-PM-07_08_59
Last ObjectModification: 2020_04_25-PM-01_41_37

Theory : cubical!type!theory


Home Index