Nuprl Lemma : cubical-universe-p
∀[G:j⊢]. ∀[A:{G ⊢ _:c𝕌}]. ∀[T:{G ⊢ _}].  ((A)p ∈ {G.T ⊢ _:c𝕌})
Proof
Definitions occuring in Statement : 
cubical-universe: c𝕌
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
csm-ap-term-p, 
cubical-universe_wf, 
cubical-type-cumulativity, 
csm-cubical-universe, 
cubical-type_wf, 
istype-cubical-universe-term, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
dependent_functionElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[T:\{G  \mvdash{}  \_\}].    ((A)p  \mmember{}  \{G.T  \mvdash{}  \_:c\mBbbU{}\})
Date html generated:
2020_05_20-PM-07_08_59
Last ObjectModification:
2020_04_25-PM-01_41_37
Theory : cubical!type!theory
Home
Index