Nuprl Lemma : transport-type_wf
∀[G:j⊢]. ∀[A:{G ⊢ _:c𝕌}].  (TransportType(A) ∈ 𝕌{[i'' | j'']})
Proof
Definitions occuring in Statement : 
transport-type: TransportType(A)
, 
cubical-universe: c𝕌
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
transport-type: TransportType(A)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-term_wf, 
cubical-universe_wf, 
subtype_rel_universe1, 
path-type_wf, 
cubical-term-eqcd, 
cubical-fun_wf, 
universe-decode_wf, 
istype-cubical-universe-term, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isectEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
functionEquality, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_:c\mBbbU{}\}].    (TransportType(A)  \mmember{}  \mBbbU{}\{[i''  |  j'']\})
Date html generated:
2020_05_20-PM-07_42_33
Last ObjectModification:
2020_04_30-AM-11_53_41
Theory : cubical!type!theory
Home
Index