Nuprl Lemma : transport-type_wf

[G:j⊢]. ∀[A:{G ⊢ _:c𝕌}].  (TransportType(A) ∈ 𝕌{[i'' j'']})


Proof




Definitions occuring in Statement :  transport-type: TransportType(A) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T transport-type: TransportType(A) subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] implies:  Q
Lemmas referenced :  cubical-term_wf cubical-universe_wf subtype_rel_universe1 path-type_wf cubical-term-eqcd cubical-fun_wf universe-decode_wf istype-cubical-universe-term cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality hypothesis sqequalRule isectEquality equalityTransitivity equalitySymmetry applyEquality independent_isectElimination lambdaEquality_alt cumulativity universeIsType universeEquality inhabitedIsType lambdaFormation_alt functionEquality equalityIstype dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_:c\mBbbU{}\}].    (TransportType(A)  \mmember{}  \mBbbU{}\{[i''  |  j'']\})



Date html generated: 2020_05_20-PM-07_42_33
Last ObjectModification: 2020_04_30-AM-11_53_41

Theory : cubical!type!theory


Home Index