Nuprl Lemma : univ-comp-sq
∀[G:Top]. (univ-comp{i:l}() ~ cfun-to-cop(G;c𝕌;compU()))
Proof
Definitions occuring in Statement : 
univ-comp: univ-comp{i:l}()
, 
compU: compU()
, 
cubical-universe: c𝕌
, 
comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp)
, 
univ-comp: univ-comp{i:l}()
, 
comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp)
, 
canonical-section: canonical-section(Gamma;A;I;rho;a)
, 
context-map: <rho>
, 
cubical-universe: c𝕌
, 
compU: compU()
, 
closed-cubical-universe: cc𝕌
, 
closed-type-to-type: closed-type-to-type(T)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
cubical_type_ap_morph_pair_lemma, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis
Latex:
\mforall{}[G:Top].  (univ-comp\{i:l\}()  \msim{}  cfun-to-cop(G;c\mBbbU{};compU()))
Date html generated:
2020_05_20-PM-07_23_32
Last ObjectModification:
2020_04_25-PM-10_00_18
Theory : cubical!type!theory
Home
Index