Nuprl Lemma : univ-comp-sq

[G:Top]. (univ-comp{i:l}() cfun-to-cop(G;c𝕌;compU()))


Proof




Definitions occuring in Statement :  univ-comp: univ-comp{i:l}() compU: compU() cubical-universe: c𝕌 comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) univ-comp: univ-comp{i:l}() comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp) canonical-section: canonical-section(Gamma;A;I;rho;a) context-map: <rho> cubical-universe: c𝕌 compU: compU() closed-cubical-universe: cc𝕌 closed-type-to-type: closed-type-to-type(T) all: x:A. B[x] member: t ∈ T
Lemmas referenced :  cubical_type_ap_morph_pair_lemma istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis

Latex:
\mforall{}[G:Top].  (univ-comp\{i:l\}()  \msim{}  cfun-to-cop(G;c\mBbbU{};compU()))



Date html generated: 2020_05_20-PM-07_23_32
Last ObjectModification: 2020_04_25-PM-10_00_18

Theory : cubical!type!theory


Home Index