Step * of Lemma eu-between-eq-def

e:EuclideanStructure. ∀[a,b,c:Point].  (a_b_c ⇐⇒ ¬((¬(a b ∈ Point)) ∧ (c b ∈ Point)) ∧ a-b-c)))
BY
((UnivCD THENA Auto)
   THEN (DRecord THENA Auto)
   THEN (Assert ∀[a,b,c:e."Point"].
                  (e."T" ⇐⇒ ¬((¬(a b ∈ e."Point")) ∧ (c b ∈ e."Point")) ∧ (e."B" c)))) BY
               (UseWitness ⌜e."Tdef"⌝⋅ THEN Trivial))
   THEN (InstHyp [⌜a⌝;⌜b⌝;⌜c⌝(-1)⋅ THENA Auto)
   THEN Unfolds ``eu-point eu-between-eq eu-between eu-separated`` 0⋅
   THEN Trivial) }


Latex:


Latex:
\mforall{}e:EuclideanStructure.  \mforall{}[a,b,c:Point].    (a\_b\_c  \mLeftarrow{}{}\mRightarrow{}  \mneg{}((\mneg{}(a  =  b))  \mwedge{}  (\mneg{}(c  =  b))  \mwedge{}  (\mneg{}a-b-c)))


By


Latex:
((UnivCD  THENA  Auto)
  THEN  (DRecord  1  THENA  Auto)
  THEN  (Assert  \mforall{}[a,b,c:e."Point"].
                                (e."T"  a  b  c  \mLeftarrow{}{}\mRightarrow{}  \mneg{}((\mneg{}(a  =  b))  \mwedge{}  (\mneg{}(c  =  b))  \mwedge{}  (\mneg{}(e."B"  a  b  c))))  BY
                          (UseWitness  \mkleeneopen{}e."Tdef"\mkleeneclose{}\mcdot{}  THEN  Trivial))
  THEN  (InstHyp  [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]  (-1)\mcdot{}  THENA  Auto)
  THEN  Unfolds  ``eu-point  eu-between-eq  eu-between  eu-separated``  0\mcdot{}
  THEN  Trivial)




Home Index