Nuprl Lemma : eu-between-eq-def

e:EuclideanStructure. ∀[a,b,c:Point].  (a_b_c ⇐⇒ ¬((¬(a b ∈ Point)) ∧ (c b ∈ Point)) ∧ a-b-c)))


Proof




Definitions occuring in Statement :  eu-between-eq: a_b_c eu-between: a-b-c eu-point: Point euclidean-structure: EuclideanStructure uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] euclidean-structure: EuclideanStructure record+: record+ member: t ∈ T record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt guard: {T} prop: spreadn: spread3 and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q uimplies: supposing a eu-point: Point eu-between: a-b-c eu-between-eq: a_b_c
Lemmas referenced :  subtype_rel_self not_wf equal_wf uall_wf iff_wf and_wf isect_wf eu-point_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin cut hypothesis applyEquality tokenEquality instantiate lemma_by_obid isectElimination universeEquality functionEquality equalityTransitivity equalitySymmetry lambdaEquality cumulativity hypothesisEquality because_Cache setEquality productEquality productElimination setElimination rename introduction

Latex:
\mforall{}e:EuclideanStructure.  \mforall{}[a,b,c:Point].    (a\_b\_c  \mLeftarrow{}{}\mRightarrow{}  \mneg{}((\mneg{}(a  =  b))  \mwedge{}  (\mneg{}(c  =  b))  \mwedge{}  (\mneg{}a-b-c)))



Date html generated: 2016_05_18-AM-06_33_00
Last ObjectModification: 2015_12_28-AM-09_28_39

Theory : euclidean!geometry


Home Index