Nuprl Lemma : euclidean-structure_wf

EuclideanStructure ∈ 𝕌'


Proof




Definitions occuring in Statement :  euclidean-structure: EuclideanStructure member: t ∈ T universe: Type
Definitions unfolded in proof :  euclidean-structure: EuclideanStructure member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt guard: {T} prop: spreadn: spread3 and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q implies:  Q uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  record_wf top_wf record+_wf subtype_rel_self not_wf equal_wf uall_wf iff_wf and_wf isect_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality cumulativity hypothesis atomEquality equalityTransitivity equalitySymmetry universeEquality tokenEquality dependentIntersectionElimination applyEquality instantiate functionEquality hypothesisEquality because_Cache dependentIntersectionEqElimination setEquality productEquality productElimination setElimination rename lambdaFormation

Latex:
EuclideanStructure  \mmember{}  \mBbbU{}'



Date html generated: 2016_05_18-AM-06_32_04
Last ObjectModification: 2015_12_28-AM-09_28_57

Theory : euclidean!geometry


Home Index