Step
*
of Lemma
eu-inner-three-segment
∀e:EuclideanPlane. ∀[a,b,c,A,B,C:Point].  (ab=AB) supposing (bc=BC and ac=AC and A_B_C and a_b_c)
BY
{ ((Auto THEN InstLemma `eu-inner-five-segment` [⌜e⌝;⌜a⌝;⌜b⌝;⌜c⌝;⌜a⌝;⌜A⌝;⌜B⌝;⌜C⌝;⌜A⌝]⋅) THEN Auto) }
Latex:
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,A,B,C:Point].    (ab=AB)  supposing  (bc=BC  and  ac=AC  and  A\_B\_C  and  a\_b\_c)
By
Latex:
((Auto  THEN  InstLemma  `eu-inner-five-segment`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}C\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{}]\mcdot{})  THEN  Auto)
Home
Index