Nuprl Lemma : eu-inner-three-segment

e:EuclideanPlane. ∀[a,b,c,A,B,C:Point].  (ab=AB) supposing (bc=BC and ac=AC and A_B_C and a_b_c)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: euclidean-plane: EuclideanPlane
Lemmas referenced :  eu-congruent-trivial eu-congruent-iff-length eu-length-flip eu-inner-five-segment eu-congruent_wf eu-between-eq_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality hypothesis cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination because_Cache productElimination independent_isectElimination equalityTransitivity equalitySymmetry lambdaFormation isect_memberFormation setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,A,B,C:Point].    (ab=AB)  supposing  (bc=BC  and  ac=AC  and  A\_B\_C  and  a\_b\_c)



Date html generated: 2016_05_18-AM-06_38_51
Last ObjectModification: 2015_12_28-AM-09_24_01

Theory : euclidean!geometry


Home Index