Nuprl Lemma : eu-inner-three-segment
∀e:EuclideanPlane. ∀[a,b,c,A,B,C:Point].  (ab=AB) supposing (bc=BC and ac=AC and A_B_C and a_b_c)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
eu-congruent-trivial, 
eu-congruent-iff-length, 
eu-length-flip, 
eu-inner-five-segment, 
eu-congruent_wf, 
eu-between-eq_wf, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
isect_memberFormation, 
setElimination, 
rename
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,A,B,C:Point].    (ab=AB)  supposing  (bc=BC  and  ac=AC  and  A\_B\_C  and  a\_b\_c)
Date html generated:
2016_05_18-AM-06_38_51
Last ObjectModification:
2015_12_28-AM-09_24_01
Theory : euclidean!geometry
Home
Index