Nuprl Lemma : euclidean-plane_wf
EuclideanPlane ∈ 𝕌'
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
euclidean-plane: EuclideanPlane
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
euclidean-structure_wf, 
euclidean-axioms_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality
Latex:
EuclideanPlane  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_18-AM-06_33_35
Last ObjectModification:
2015_12_28-AM-09_27_44
Theory : euclidean!geometry
Home
Index