Nuprl Lemma : euclidean-axioms_wf

[e:EuclideanStructure]. (euclidean-axioms(e) ∈ ℙ)


Proof




Definitions occuring in Statement :  euclidean-axioms: euclidean-axioms(e) euclidean-structure: EuclideanStructure uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T euclidean-axioms: euclidean-axioms(e) let: let prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] cand: c∧ B implies:  Q subtype_rel: A ⊆B top: Top
Lemmas referenced :  euclidean-structure_wf pi2_wf top_wf subtype_rel_product pi1_wf_top eu-line-circle_wf and_wf eu-middle_wf eu-inner-pasch_wf eu-colinear_wf eu-between_wf eu-extend_wf eu-between-eq_wf not_wf equal_wf isect_wf eu-congruent_wf eu-point_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality because_Cache setEquality lambdaFormation setElimination rename dependent_set_memberEquality productElimination independent_pairFormation applyEquality independent_isectElimination isect_memberEquality voidElimination voidEquality equalityEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination isectEquality axiomEquality

Latex:
\mforall{}[e:EuclideanStructure].  (euclidean-axioms(e)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_33_30
Last ObjectModification: 2016_01_12-PM-02_03_37

Theory : euclidean!geometry


Home Index