Nuprl Lemma : euclidean-axioms_wf
∀[e:EuclideanStructure]. (euclidean-axioms(e) ∈ ℙ)
Proof
Definitions occuring in Statement : 
euclidean-axioms: euclidean-axioms(e)
, 
euclidean-structure: EuclideanStructure
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
euclidean-axioms: euclidean-axioms(e)
, 
let: let, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
euclidean-structure_wf, 
pi2_wf, 
top_wf, 
subtype_rel_product, 
pi1_wf_top, 
eu-line-circle_wf, 
and_wf, 
eu-middle_wf, 
eu-inner-pasch_wf, 
eu-colinear_wf, 
eu-between_wf, 
eu-extend_wf, 
eu-between-eq_wf, 
not_wf, 
equal_wf, 
isect_wf, 
eu-congruent_wf, 
eu-point_wf, 
uall_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
setEquality, 
lambdaFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
applyEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
isectEquality, 
axiomEquality
Latex:
\mforall{}[e:EuclideanStructure].  (euclidean-axioms(e)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_33_30
Last ObjectModification:
2016_01_12-PM-02_03_37
Theory : euclidean!geometry
Home
Index