Nuprl Lemma : eu-line-circle_wf
∀[e:EuclideanStructure]. ∀[a,b:Point]. ∀[x:{x:Point| a_x_b} ]. ∀[y:{y:Point| a_b_y} ]. ∀[p:{p:Point| ap=ax} ].
∀[q:{q:Point| aq=ay ∧ (¬(q = p ∈ Point))} ].
  (intersect pq (at radius xy) with Oab  ∈ Point × Point)
Proof
Definitions occuring in Statement : 
eu-line-circle: intersect pq (at radius xy) with Oab 
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
euclidean-structure: EuclideanStructure
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-line-circle: intersect pq (at radius xy) with Oab 
, 
and: P ∧ Q
, 
eu-point: Point
, 
eu-congruent: ab=cd
, 
eu-between-eq: a_b_c
, 
euclidean-structure: EuclideanStructure
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
guard: {T}
, 
prop: ℙ
, 
spreadn: spread3, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
subtype_rel_self, 
not_wf, 
equal_wf, 
uall_wf, 
iff_wf, 
and_wf, 
isect_wf, 
set_wf, 
eu-point_wf, 
eu-congruent_wf, 
eu-between-eq_wf, 
euclidean-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
lemma_by_obid, 
isectElimination, 
universeEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
setEquality, 
productEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[e:EuclideanStructure].  \mforall{}[a,b:Point].  \mforall{}[x:\{x:Point|  a\_x\_b\}  ].  \mforall{}[y:\{y:Point|  a\_b\_y\}  ].  \mforall{}[p:\{p:Point|\000C 
                                                                                                                                                                                    ap=ax\}  ].
\mforall{}[q:\{q:Point|  aq=ay  \mwedge{}  (\mneg{}(q  =  p))\}  ].
    (intersect  pq  (at  radius  xy)  with  Oab    \mmember{}  Point  \mtimes{}  Point)
Date html generated:
2016_05_18-AM-06_33_23
Last ObjectModification:
2015_12_28-AM-09_28_18
Theory : euclidean!geometry
Home
Index