Nuprl Lemma : eu-extend_wf

[e:EuclideanStructure]. ∀[a:Point]. ∀[b:{b:Point| ¬(a b ∈ Point)} ]. ∀[c,d:Point].  ((extend ab by cd) ∈ Point)


Proof




Definitions occuring in Statement :  eu-extend: (extend ab by cd) eu-point: Point euclidean-structure: EuclideanStructure uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-extend: (extend ab by cd) eu-point: Point euclidean-structure: EuclideanStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt guard: {T} prop: spreadn: spread3 and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  subtype_rel_self not_wf equal_wf uall_wf iff_wf and_wf isect_wf eu-point_wf set_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule sqequalHypSubstitution dependentIntersectionElimination dependentIntersectionEqElimination hypothesis applyEquality tokenEquality instantiate lemma_by_obid isectElimination universeEquality functionEquality equalityTransitivity equalitySymmetry lambdaEquality cumulativity hypothesisEquality because_Cache setEquality productEquality productElimination lambdaFormation dependent_set_memberEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[e:EuclideanStructure].  \mforall{}[a:Point].  \mforall{}[b:\{b:Point|  \mneg{}(a  =  b)\}  ].  \mforall{}[c,d:Point].
    ((extend  ab  by  cd)  \mmember{}  Point)



Date html generated: 2016_05_18-AM-06_33_16
Last ObjectModification: 2015_12_28-AM-09_28_38

Theory : euclidean!geometry


Home Index