Nuprl Lemma : eu-congruent-trivial

e:EuclideanPlane. ∀[a,b:Point].  aa=bb


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T euclidean-plane: EuclideanPlane stable: Stable{P} uimplies: supposing a not: ¬A implies:  Q prop: false: False and: P ∧ Q exists: x:A. B[x]
Lemmas referenced :  stable__eu-congruent not_wf eu-congruent_wf eu-point_wf euclidean-plane_wf eu-congruent-refl equal_wf eu-extend-exists eu-congruence-identity and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination because_Cache independent_isectElimination independent_functionElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality,  sqequalRule voidElimination dependent_set_memberEquality productElimination independent_pairFormation applyEquality lambdaEquality setEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    aa=bb



Date html generated: 2016_10_26-AM-07_41_03
Last ObjectModification: 2016_07_12-AM-08_07_17

Theory : euclidean!geometry


Home Index