Nuprl Lemma : eu-congruence-identity
∀[e:EuclideanPlane]. ∀[a,b,c:Point].  a = b ∈ Point supposing ab=cc
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
guard: {T}
, 
euclidean-axioms: euclidean-axioms(e)
, 
and: P ∧ Q
Lemmas referenced : 
eu-congruent_wf, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c:Point].    a  =  b  supposing  ab=cc
Date html generated:
2016_05_18-AM-06_33_59
Last ObjectModification:
2015_12_28-AM-09_27_42
Theory : euclidean!geometry
Home
Index