Nuprl Lemma : eu-extend-exists

e:EuclideanPlane. ∀q:Point. ∀a:{a:Point| ¬(q a ∈ Point)} . ∀b,c:Point.  ∃x:Point. (q_a_x ∧ ax=bc)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] euclidean-plane: EuclideanPlane and: P ∧ Q cand: c∧ B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eu-extend_wf eu-extend-property and_wf eu-between-eq_wf eu-congruent_wf eu-point_wf set_wf not_wf equal_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination because_Cache productElimination independent_pairFormation sqequalRule lambdaEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}q:Point.  \mforall{}a:\{a:Point|  \mneg{}(q  =  a)\}  .  \mforall{}b,c:Point.    \mexists{}x:Point.  (q\_a\_x  \mwedge{}  ax=bc)



Date html generated: 2016_05_18-AM-06_33_45
Last ObjectModification: 2015_12_28-AM-09_28_01

Theory : euclidean!geometry


Home Index