Nuprl Lemma : eu-extend-property
∀e:EuclideanPlane
  ∀[q:Point]. ∀[a:{a:Point| ¬(q = a ∈ Point)} ]. ∀[b,c:Point].  (q_a_(extend qa by bc) ∧ a(extend qa by bc)=bc)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
eu-extend: (extend ab by cd), 
eu-between-eq: a_b_c, 
eu-congruent: ab=cd, 
eu-point: Point, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
euclidean-plane: EuclideanPlane, 
member: t ∈ T, 
euclidean-axioms: euclidean-axioms(e), 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}
Lemmas referenced : 
euclidean-plane_wf, 
equal_wf, 
not_wf, 
set_wf, 
eu-point_wf, 
sq_stable__eu-congruent, 
eu-extend_wf, 
sq_stable__eu-between-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
dependent_functionElimination, 
productElimination, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
because_Cache, 
lambdaEquality
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[q:Point].  \mforall{}[a:\{a:Point|  \mneg{}(q  =  a)\}  ].  \mforall{}[b,c:Point].
        (q\_a\_(extend  qa  by  bc)  \mwedge{}  a(extend  qa  by  bc)=bc)
Date html generated:
2016_05_18-AM-06_33_38
Last ObjectModification:
2016_01_16-PM-10_31_52
Theory : euclidean!geometry
Home
Index