Nuprl Lemma : eu-extend-property

e:EuclideanPlane
  ∀[q:Point]. ∀[a:{a:Point| ¬(q a ∈ Point)} ]. ∀[b,c:Point].  (q_a_(extend qa by bc) ∧ a(extend qa by bc)=bc)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-extend: (extend ab by cd) eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B euclidean-plane: EuclideanPlane member: t ∈ T euclidean-axioms: euclidean-axioms(e) sq_stable: SqStable(P) implies:  Q squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  euclidean-plane_wf equal_wf not_wf set_wf eu-point_wf sq_stable__eu-congruent eu-extend_wf sq_stable__eu-between-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut sqequalHypSubstitution setElimination thin rename lemma_by_obid dependent_functionElimination productElimination hypothesisEquality isectElimination hypothesis independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination independent_pairFormation because_Cache lambdaEquality

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[q:Point].  \mforall{}[a:\{a:Point|  \mneg{}(q  =  a)\}  ].  \mforall{}[b,c:Point].
        (q\_a\_(extend  qa  by  bc)  \mwedge{}  a(extend  qa  by  bc)=bc)



Date html generated: 2016_05_18-AM-06_33_38
Last ObjectModification: 2016_01_16-PM-10_31_52

Theory : euclidean!geometry


Home Index