Nuprl Lemma : eu-congruent-refl

e:EuclideanPlane. ∀[a,b:Point].  ab=ab


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] euclidean-plane: EuclideanPlane member: t ∈ T euclidean-axioms: euclidean-axioms(e) and: P ∧ Q guard: {T} sq_stable: SqStable(P) implies:  Q squash: T uimplies: supposing a
Lemmas referenced :  sq_stable__eu-congruent euclidean-plane_wf eu-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid isectElimination hypothesisEquality hypothesis productElimination dependent_functionElimination independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    ab=ab



Date html generated: 2016_05_18-AM-06_34_43
Last ObjectModification: 2016_01_16-PM-10_31_18

Theory : euclidean!geometry


Home Index