Nuprl Lemma : eu-congruent-refl
∀e:EuclideanPlane. ∀[a,b:Point].  ab=ab
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
member: t ∈ T
, 
euclidean-axioms: euclidean-axioms(e)
, 
and: P ∧ Q
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uimplies: b supposing a
Lemmas referenced : 
sq_stable__eu-congruent, 
euclidean-plane_wf, 
eu-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    ab=ab
Date html generated:
2016_05_18-AM-06_34_43
Last ObjectModification:
2016_01_16-PM-10_31_18
Theory : euclidean!geometry
Home
Index