Nuprl Lemma : eu-congruent-iff-length
∀e:EuclideanPlane. ∀[a,b,c,d:Point].  uiff(ab=cd;|ab| = |cd| ∈ {p:Point| O_X_p} )
Proof
Definitions occuring in Statement : 
eu-length: |s|
, 
eu-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-X: X
, 
eu-O: O
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
eu-seg-congruent: s1 ≡ s2
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
eu-seg-congruent-iff-length, 
eu-mk-seg_wf, 
eu_seg1_mk_seg_lemma, 
eu_seg2_mk_seg_lemma, 
eu-congruent_wf, 
equal_wf, 
eu-point_wf, 
eu-between-eq_wf, 
eu-O_wf, 
eu-X_wf, 
eu-length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
introduction, 
axiomEquality, 
setEquality, 
because_Cache
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    uiff(ab=cd;|ab|  =  |cd|)
Date html generated:
2016_05_18-AM-06_37_38
Last ObjectModification:
2015_12_28-AM-09_24_37
Theory : euclidean!geometry
Home
Index