Nuprl Lemma : eu-congruent-iff-length

e:EuclideanPlane. ∀[a,b,c,d:Point].  uiff(ab=cd;|ab| |cd| ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-congruent: ab=cd eu-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T euclidean-plane: EuclideanPlane eu-seg-congruent: s1 ≡ s2 top: Top prop:
Lemmas referenced :  eu-seg-congruent-iff-length eu-mk-seg_wf eu_seg1_mk_seg_lemma eu_seg2_mk_seg_lemma eu-congruent_wf equal_wf eu-point_wf eu-between-eq_wf eu-O_wf eu-X_wf eu-length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename hypothesis productElimination independent_isectElimination sqequalRule isect_memberEquality voidElimination voidEquality introduction axiomEquality setEquality because_Cache

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    uiff(ab=cd;|ab|  =  |cd|)



Date html generated: 2016_05_18-AM-06_37_38
Last ObjectModification: 2015_12_28-AM-09_24_37

Theory : euclidean!geometry


Home Index