Nuprl Lemma : eu-length_wf

[e:EuclideanPlane]. ∀[s:Segment].  (|s| ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-length: |s| eu-segment: Segment euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-length: |s| all: x:A. B[x] euclidean-plane: EuclideanPlane and: P ∧ Q prop:
Lemmas referenced :  eu-extend-property eu-O_wf eu-not-colinear-OXY eu-X_wf not_wf equal_wf eu-point_wf eu-seg1_wf eu-seg2_wf eu-extend_wf eu-between-eq_wf eu-segment_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename hypothesis because_Cache productElimination dependent_set_memberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[s:Segment].    (|s|  \mmember{}  \{p:Point|  O\_X\_p\}  )



Date html generated: 2016_10_26-AM-07_41_37
Last ObjectModification: 2016_09_20-AM-10_56_33

Theory : euclidean!geometry


Home Index