Nuprl Lemma : eu-length_wf
∀[e:EuclideanPlane]. ∀[s:Segment].  (|s| ∈ {p:Point| O_X_p} )
Proof
Definitions occuring in Statement : 
eu-length: |s|
, 
eu-segment: Segment
, 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-X: X
, 
eu-O: O
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-length: |s|
, 
all: ∀x:A. B[x]
, 
euclidean-plane: EuclideanPlane
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
eu-extend-property, 
eu-O_wf, 
eu-not-colinear-OXY, 
eu-X_wf, 
not_wf, 
equal_wf, 
eu-point_wf, 
eu-seg1_wf, 
eu-seg2_wf, 
eu-extend_wf, 
eu-between-eq_wf, 
eu-segment_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
productElimination, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[s:Segment].    (|s|  \mmember{}  \{p:Point|  O\_X\_p\}  )
Date html generated:
2016_10_26-AM-07_41_37
Last ObjectModification:
2016_09_20-AM-10_56_33
Theory : euclidean!geometry
Home
Index